Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Chipot, M; Weissler, F (1988). On the elliptic problem Δu-|∇u| q +λu p =0. In: Ni, W M; Peletier, L A; Serrin, J. Nonlinear diffusion equations and their equilibrium states I (Berkeley, CA, 1986). New York, 237-243. ISBN 0-387-96771-0.

Full text not available from this repository.

Abstract

We consider regular solutions of the elliptic problem (1) $\Delta u-|\nabla u|^q+\lambda u^p=0$, and $u>0$ for $x\in\Omega $, $u=0$ on $x\in\partial \Omega $, where $\Omega \subset \bold R^n$ is a smooth, bounded domain, $u\colon \overline{\Omega }\rightarrow \bold R$ is $C^2$, and $q, p, \lambda$ are parameters satisfying $q, p>1$ and $\lambda >0$. The motivation for studying problem (1) comes from a related parabolic problem, $(2)\ v_t=\Delta v-|\nabla v|^q+v^p\ (t>0,\ x\in\Omega )$, $v(0, x)=\varphi(x)\ge 0\ (x\in\Omega )$, $v(t, x)=0\ (t>0$, $x\in\partial \Omega )$, where now $v=v(t, x)$. Previously, we investigated whether there exist initial values $\varphi$ for which the resulting solution of (2) blows up in finite time. It turns out that a natural candidate for such a $\varphi$ is a solution of (1). More precisely, assume either $(3)\ 1<q< 2p/(p+1)$, $n/2<(p+1)/(p-1)$, $\lambda>0$ is sufficiently small, or $(4)\ q=2p/(p+1)$, $p$ is sufficiently large, $0<\lambda\le 2/(p+1)$. It follows that if $\varphi$ is a solution of (1), then the resulting solution of (2) blows up in finite time.
Thus we are led to investigate under what conditions there exist solutions of (1) and whether these solutions are unique.

Item Type:Book Section, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
DDC:510 Mathematics
Uncontrolled Keywords:regular solutions; existence; uniqueness; support
Language:English
Date:1988
Deposited On:28 Oct 2009 13:37
Last Modified:04 Apr 2012 12:57
Publisher:Springer
Series Name:Mathematical Sciences Research Institute Publications.
Number:12
ISSN:0940-4740
ISBN:0-387-96771-0
Official URL:http://www.springer.com/mathematics/analysis/book/978-0-387-96771-4
Related URLs:http://www.zentralblatt-math.org/zbmath/search/?q=an%3A0699.35102
https://biblio.unizh.ch:443/F/?local_base=UZH01&con_lng=GER&func=find-b&find_code=SYS&request=001253468
Citations:Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page