Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Chipot, M; Weissler, F (1988). On the elliptic problem Δu-|∇u| q +λu p =0. In: Ni, W M; Peletier, L A; Serrin, J. Nonlinear diffusion equations and their equilibrium states I (Berkeley, CA, 1986). New York: Springer, 237-243.

Full text not available from this repository.


We consider regular solutions of the elliptic problem (1) $\Delta u-|\nabla u|^q+\lambda u^p=0$, and $u>0$ for $x\in\Omega $, $u=0$ on $x\in\partial \Omega $, where $\Omega \subset \bold R^n$ is a smooth, bounded domain, $u\colon \overline{\Omega }\rightarrow \bold R$ is $C^2$, and $q, p, \lambda$ are parameters satisfying $q, p>1$ and $\lambda >0$. The motivation for studying problem (1) comes from a related parabolic problem, $(2)\ v_t=\Delta v-|\nabla v|^q+v^p\ (t>0,\ x\in\Omega )$, $v(0, x)=\varphi(x)\ge 0\ (x\in\Omega )$, $v(t, x)=0\ (t>0$, $x\in\partial \Omega )$, where now $v=v(t, x)$. Previously, we investigated whether there exist initial values $\varphi$ for which the resulting solution of (2) blows up in finite time. It turns out that a natural candidate for such a $\varphi$ is a solution of (1). More precisely, assume either $(3)\ 1<q< 2p/(p+1)$, $n/2<(p+1)/(p-1)$, $\lambda>0$ is sufficiently small, or $(4)\ q=2p/(p+1)$, $p$ is sufficiently large, $0<\lambda\le 2/(p+1)$. It follows that if $\varphi$ is a solution of (1), then the resulting solution of (2) blows up in finite time.
Thus we are led to investigate under what conditions there exist solutions of (1) and whether these solutions are unique.


Additional indexing

Item Type:Book Section, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Uncontrolled Keywords:regular solutions; existence; uniqueness; support
Deposited On:28 Oct 2009 13:37
Last Modified:05 Apr 2016 13:29
Series Name:Mathematical Sciences Research Institute Publications.
Official URL:http://www.springer.com/mathematics/analysis/book/978-0-387-96771-4
Related URLs:http://www.zentralblatt-math.org/zbmath/search/?q=an%3A0699.35102

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page