The treatment sum of squares in the one-way analysis of variance can be expressed in two different ways: as a sum of comparisons between each treatment and the remaining treatments combined, or as a sum of comparisons between the treatments two at a time. When comparisons between treatments are made with the Wilcoxon rank sum statistic, these two expressions lead to two different tests; namely, that of Kruskal and Wallis and one which is essentially the same as that proposed by Crouse (1961,1966). The latter statistic is known to be asymptotically distributed as a chi-squared variable when the numbers of replicates are large. Here it is shown to be asymptotically normal when the replicates are few but the number of treatments is large. For all combinations of numbers of replicates and treatments its empirical distribution is well approximated by a beta distribution

Barbour, A D; Cartwright, D I; Donnelly, J B; Eagleson, G K (1985). *A new rank test for the K-sample problem.* Communications in Statistics. Theory and Methods, 14(6):1471-1484.

## Abstract

The treatment sum of squares in the one-way analysis of variance can be expressed in two different ways: as a sum of comparisons between each treatment and the remaining treatments combined, or as a sum of comparisons between the treatments two at a time. When comparisons between treatments are made with the Wilcoxon rank sum statistic, these two expressions lead to two different tests; namely, that of Kruskal and Wallis and one which is essentially the same as that proposed by Crouse (1961,1966). The latter statistic is known to be asymptotically distributed as a chi-squared variable when the numbers of replicates are large. Here it is shown to be asymptotically normal when the replicates are few but the number of treatments is large. For all combinations of numbers of replicates and treatments its empirical distribution is well approximated by a beta distribution

## Citations

## Altmetrics

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

Dewey Decimal Classification: | 510 Mathematics |

Language: | English |

Date: | 1985 |

Deposited On: | 19 Oct 2009 13:33 |

Last Modified: | 05 Apr 2016 13:29 |

Publisher: | Taylor & Francis |

ISSN: | 0361-0926 |

Publisher DOI: | 10.1080/03610928508828988 |

## Download

Full text not available from this repository.View at publisher

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.