Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Chipot, M (1983). On the equations of age-dependent population dynamics. Archiv for Rational Mechanics and Analysis, 82(1):13-25.

Full text not available from this repository.

Abstract

The aim of this work is to give a direct and constructive proof of existence and uniqueness of a global solution to the equations of age-dependent population dynamics introduced and considered by M. E. Gurtin & R. C. MacCamy in [3]. The linear theory was developed by F. R. Sharpe & A. J. Lotka [10] and A. G. McKendrick [8] (see also [1], [9]) and extended to the nonlinear case by M. E. Gurtin & R. C. MacCamy in [3] (see also [4] [5] [6]). In [3], the key of the proof of existence and uniqueness was to reduce the problem to a pair of integral equations. In fact, as we shall see, the problem can also be solved by a simple fixed point argument. To outline more clearly the ideas of the proof, we will first discuss the setting and the resolution of the linear case, and then we will generalize the results of [3].

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
DDC:510 Mathematics
Language:English
Date:1983
Deposited On:19 Oct 2009 13:33
Last Modified:28 Nov 2013 00:12
Publisher:Springer
ISSN:0003-9527
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:10.1007/BF00251723
Related URLs:http://www.ams.org/mathscinet-getitem?mr=684412
Citations:Web of Science®. Times Cited: 8
Google Scholar™
Scopus®. Citation Count: 5

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page