On a functional central limit theorem for random walks conditioned to stay positive

Bolthausen, E

Abstract: Let \(\{X_k : k \geq 1\} \) be a sequence of i.i.d.rv with \(E(X_i) = 0 \) and \(E(X_i^2) = \sigma^2, 0 < \sigma^2 < \infty \). Set \(S_n = X_1 + \cdots + X_n \). Let \(Y_n(t) \) be \(S_k/\sigma n^{1/2} \) for \(t = k/n \) and suitably interpolated elsewhere. This paper gives a generalization of a theorem of Iglehart which states weak convergence of \(Y_n(t) \), conditioned to stay positive, to a suitable limiting process.

DOI: https://doi.org/10.1214/aop/1176996098

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-23167

Originally published at:
DOI: https://doi.org/10.1214/aop/1176996098
ON A FUNCTIONAL CENTRAL LIMIT THEOREM FOR RANDOM WALKS CONDITIONED TO STAY POSITIVE

BY ERWIN BOLTHAUSEN

Universität Konstanz

Let \(\{X_k: k \geq 1\} \) be a sequence of i.i.d.\,rv with \(E(X_k) = 0 \) and \(E(X_k^2) = \sigma^2 \), \(0 < \sigma^2 < \infty \). Set \(S_n = X_1 + \cdots + X_n \). Let \(Y_n(t) \) be \(S_n/\sigma n^\alpha \) for \(t = k/n \) and suitably interpolated elsewhere. This paper gives a generalization of a theorem of Iglehart which states weak convergence of \(Y_n(t) \), conditioned to stay positive, to a suitable limiting process.

1. Introduction. Let \(\{X_i\}_{i \in \mathbb{N}} \) be a sequence of i.i.d.\,rv with \(E(X_i) = 0 \) and \(E(X_i^2) = \sigma^2 \) where \(0 < \sigma^2 < \infty \). Let \(S_k = X_1 + \cdots + X_k \) and \(Y_n(t) \) be the continuous process on \([0, 1]\) for which \(Y_n(k/n) = S_k/\sigma n^\alpha \) and which is linearly interpolated elsewhere.

It is well known (see e.g., [2]) that \(Y_n(t) \) converges weakly in \((C[0, 1], \rho) \) to the Brownian motion process, where \(C[0, 1] \) is the set of continuous functions on \([0, 1]\) and \(\rho \) the supremum metric.

Let now \(C^+ = \{f \in C: f(t) \geq 0 \text{ for } t \in [0, 1]\} \). We have \(P(Y_n \in C^+) > 0 \) for each \(n \). So the definition of conditional probabilities is elementary. Let \(Y_n^+ \) be the \(Y_n \)-process conditioned to stay positive. That is for all Borel-sets \(A \subset C[0, 1] \) we set \(P(Y_n^+ \in A) = P(Y_n \in A | Y_n \in C^+) \). We remark that \(C^+ \) is a null set for the measure of the Brownian motion. Iglehart proved [3] weak convergence of the \(Y_n^+ \) process to the Brownian meander process \(W^+ \) which is defined by

\[
W^+(t) = \left| \frac{1}{(1 - \tau)^\frac{1}{4}} W(\tau + (1 - \tau)t) \right|, \quad 0 \leq t \leq 1
\]

with \(W \) the Brownian process and \(\tau = \sup \{t \in [0, 1]: W(t) = 0\} \). (Notice that \(\tau < 1 \) a.s.)

Iglehart assumed \(E|X_i|^\alpha < \infty \) and \(X_i \) non-lattice or integer valued with span 1. It is shown in this paper that these extra assumptions are superfluous. Iglehart calculates the finite-dimensional distributions and proves tightness. Then he identifies the process with (1.1) for which Belkin [1] calculated the finite dimensional distributions. The proof given here requires no computation. It is based on identifying \(\lim_{n \to \infty} Y_n^+(t) = W(T + t) - W(T) = W^+(t) \) for an appropriate random time \(T \) and uses only the continuous mapping theorem (Theorem 5.1 in [2]).

2. Notations and preliminary lemmas. For \(s \in (0, \infty) \) let \(C^s \) be the set of

Received May 27, 1975; revised November 10, 1975.

AMS 1970 subject classifications. Primary 60F05; Secondary 60J15.

Key words and phrases. Conditioned limit theorem, functional central limit theorem, random walks, weak convergence.

480
continuous functions on $[0, s]$ (or $[0, \infty)$ for $s = \infty$) and \mathcal{B}^s the smallest σ-algebra such that the mappings $C^* \ni f \mapsto f(t) \in \mathbb{R}$ are measurable.

Let P^s be the measure of the Brownian motion on (C^*, \mathcal{B}^s).

$$ T^*: C^* \to \overline{\mathbb{R}^+} = [0, \infty) \quad \text{is the mapping with} $$

$$(2.1) \quad T^*(f) = \inf\{t: f(u) \geq f(t) \quad \text{for} \quad t \leq u \leq t + 1 \leq s\}, \quad (\inf \emptyset = \infty) .$$

We set $T = T^\infty$ and $P = P^\infty$ for simplicity.

Lemma 2.1. For all $s \in (0, \infty)$ T^s is \mathcal{B}^s-measurable.

Proof. If $v = s - (u + 1) > 0$ then $\{T^s \leq u\} = \bigcap_{n \in \mathbb{N}} \{f \in C^*: \exists \text{ there exists a rational } r \leq u + 1/n \text{ with } f(r) < \min_{1 \leq i \leq n} f(r + i/n) + 1/n\}$, which is easily seen to belong to \mathcal{B}^s.

Lemma 2.2. $P(T < \infty) = 1$.

Proof. Let $A_s = \{f \in C^*: s \leq u \leq s + \varepsilon \}$ with $f(s) \leq f(u)$ for $s \leq u \leq s + \varepsilon$. Now we have $A_s \downarrow \{f \in C^*: f \text{ nonincreasing}\}$ as $\varepsilon \downarrow 0$. We infer $P(A_s) \uparrow 1$ for $\varepsilon \downarrow 0$. If $\varphi: C^\infty \to C^\infty$ is defined by $\varphi(f)(t) = e^{-t}f(\varepsilon t)$ then φ is measure preserving (see [5] page 246) and $\varphi(A_s) \subset \{T < \infty\}$ so $P(T < \infty) \geq P(A_s)$ for all $\varepsilon > 0$.

Lemma 2.3. The following three statements are true for all $s \in (0, \infty]$.

$$(2.2) \quad P^s(f(T^s) = f(T^s + 1)) = 0 ;$$

$$(2.3) \quad P^s(T^s = s - 1) = 0 ;$$

$$(2.4) \quad P^s(\text{ex. u} \in (0, 1) \text{ with } f(T^s) = f(T^s + u)) = 0 .$$

Proof. We set $m(t) = \min_{0 \leq s \leq t} W(t)$. $D(t) = W(t) - m(t)$ has the same finite-dimensional distributions as $|W(t)|$ (see [5] page 193). Observe now that $T^s = \inf\{t \leq s - 1: m(t) = m(t + 1)\}$. Now $T^s = s - 1$ implies $D(s - 1) = 0$ which has P measure 0. This proves (2.3).

Let $U = \{\text{ex. } u < v < w \text{ with } m(u) = m(v) = m(w) \text{ and } D(u) = D(v) = D(w) = 0\}$. Then $U \subset \bigcup_{r,s \in \mathbb{Q}} \{\min_{0 \leq s \leq r} W(t) = \min_{0 \leq s \leq r+1} W(t)\}$ and the last has P measure 0. This proves (2.4).

It suffices to prove (2.2) for $s = \infty$. With probability one, the hitting time process $\{T_x: x \geq 0\}$ $(T_x = \inf\{t: W(t) = -x\})$ has no jumps of length one. This follows from its Lévy decomposition (see Section 1.7 of [4]). Together with $P(U) = 0$ this yields (2.2).

Lemma 2.4. For each $s \in (0, \infty)$ T^s is a continuous P^s a.e. on (C^s, ρ).

Proof. By (2.3) it suffices to consider the case $s = \infty$. Let f be such that $T(f) < \infty$ and f does not belong to the null sets defined in (2.2)—(2.4).

(I) We first prove that for all $\delta > 0$ there exists an $\varepsilon > 0$ with

$$ T(f') \leq T(f) + \delta \quad \text{when} \quad \rho(f, f') < \varepsilon . $$

By (2.2) there is as $\tau < \delta$ so that
\[\inf_{T+1 \leq u \leq T+1+\tau} f(u) > f(T). \]

Now (2.4) gives $\varepsilon = \frac{1}{4} (\inf_{T+1 \leq u \leq T+1+\tau} f(u) - f(T)) > 0$.

If $\rho(f, f') < \varepsilon$ and γ' is such that $T(f) \leq \gamma' \leq T(f) + \tau$ and $f'(\gamma') = \inf_{T\leq u \leq T+\tau} f'(u)$ then $T(f') \leq \gamma' \leq T(f) + \delta$.

(II) To show the other inequality note that
\[\lim_{n \to \infty} (\inf \{T(f'): \rho(f, f') < 1/n\}) = \lambda \leq T(f). \]

Let $\{f_n\}_{n \in N}$ be a sequence with $\rho(f, f_n) \leq 1/n$ and $\lim_{n \to \infty} T(f_n) = \lambda$. Let $\varepsilon > 0$.

By the continuity of f and the uniform convergence of f_n, there exists n_0 such that for $n \geq n_0$ we have:
\[
\inf_{T\leq u \leq T+\lambda+1} f(u) \geq \inf_{T\leq f(f_n) \leq T+\lambda+1} f(u) - \varepsilon \\
\geq \inf_{T\leq f(f_n) \leq T+\lambda+1} f(u) - 2\varepsilon \\
\geq f_n(T(f_n)) - 2\varepsilon \geq f(T(f_n)) - 3\varepsilon \geq f(\lambda) - 4\varepsilon.
\]

So $\inf_{T\leq u \leq T+\lambda+1} f(u) \geq f(\lambda)$ which implies $T(f) \leq \lambda$ completing the proof of Lemma 2.4.

Let u be the function in C^1 which is everywhere equal -1. We define a map $\Phi_s: C^s \to C^1$
\[\Phi_s(f)(t) = f(Ts(f) + t) \quad \text{for} \quad Ts(f) < \infty \]
\[= u \quad \text{for} \quad Ts(f) = \infty. \]

We write $\Phi = \Phi_s$ for simplicity.

A straightforward conclusion of Lemma 2.4 is

Lemma 2.5. For each $s \in (0, \infty]$ Φ_s is continuous P^s a.s. on (C^s, ρ).

3. Sums of independent random variables conditioned to stay positive. Let X_1, X_2, \ldots, be i.i.d. rv with $E(X_i) = 0; E(X_i^2) = \sigma^2 < \infty$ ($\sigma^2 > 0$) and $S_k = \sum_{j=1}^k X_j$. $T_n = \inf\{k: S_{k+i} \geq S_k \text{ for } i = 1, \ldots, n\}$. Clearly $T_n < \infty$ holds a.s.

We set $Z_k = S_{T_n+k} - S_{T_n}$.

Lemma 3.1. For each sequence of real numbers a_1, \ldots, a_n
\[(3.1) \quad P(S_k \leq a_k, k = 1, \ldots, n | S_k \geq 0, k = 1, \ldots, n) \]
\[= P(Z_k \leq a_k, k = 1, \ldots, n). \]

Proof. This is an easy consequence of the independence and identical distribution of the X_i.

If $B_j = \bigcup_{i=0}^{j-1} \{S_i \leq S_r \text{ for } s + 1 \leq r \leq \min(j, s + n)\}$ we have
\[P(S_{T_n+k} - S_{T_n} \leq a_k \text{ for } k = 1, \ldots, n) \]
\[= \sum_{j=0}^{\infty} P(S_{j+k} - S_j \leq a_k \text{ for } k = 1, \ldots, n | T_n = j)P(T_n = j) \]
\[= \sum_{j=0}^{\infty} P(S_{j+k} = S_j \leq a_k \text{ for } k = 1, \ldots, n | S_{j+k} \geq S_j \text{ for } k = 1, \ldots, n \text{ and } B_t^s) P(T_n = j) \]
\[= P(S_k \leq a_k, k = 1, \ldots, n | S_k \geq 0, k = 1, \ldots, n) \]
\[\text{since } T_n < \infty \text{ a.s.} \]

We set \(Y_n(k/n) = (1/n^4 \sigma) S_k \) for \(k \geq 0 \) and \(Y_n(t) \) linearly interpolated.

Let \(Q_n \) be the probability measure defined on \((C^\infty, B^\infty)\) by this process. Let \(\Pi_s^c : C^\infty \to C^c \) be the projection map and \(\Phi, C^+ \) defined as above. We remark that \(P^s = P \Pi_s^{-1} \).

Let \(Q_n \Pi_s^{-1}(dx | C^+) \) be the probability measure on \(C^c \) which is defined by
\[Q_n \Pi_s^{-1}(A | C^+) = Q_n(\Pi_s^{-1}(A \cap C^+))/Q_n(\Pi_s^{-1}(C^+)) \]
for \(A \in B^1 \).

Theorem 3.2. The probability measures \(Q_n \Pi_s^{-1}(dx | C^+) \) converge weakly to \(P \Phi^{-1} \) (on \((C^1, \rho))\).

Proof. We have proved in Lemma 3.1 that
\[(3.2) \quad Q_n \Pi_s^{-1}(dx | C^+) = Q_n \Phi^{-1}(dx) \quad \text{holds.} \]
Now by Donsker's theorem (see [2]), \(Q_n \Pi_s^{-1} \) converges weakly to \(P^s \) for \(s < \infty \).

With regard to Lemma 2.5 we have for \(s < \infty \)
\[(3.3) \quad Q_n(\Phi_s \Pi_s)^{-1} \to P^s \Phi_s^{-1} \quad \text{weakly.} \]
(Theorem 5.1 in [2].)

Let \(A \) be a continuity set in \(B^1 \), that is \(P \Phi^{-1}(\partial A) = 0 \). We are going to show that
\[(3.4) \quad \lim_{n \to \infty} Q_n \Phi^{-1}(A) = P \Phi^{-1}(A). \]
The theorem then follows. (3.4) doesn't follow directly from (3.3) because we have there the assumption \(s < \infty \). Set
\[D = \{ f \in C^1 : \min_{x \in I_{1/2}} f(t) \geq -1/2 \} \]
Without loss of generality we can assume \(A \subset D \). (If not: replace \(A \) by \(A \cap D \) noticing \(Q_n \Phi^{-1}(D^c) = P \Phi^{-1}(D^c) = P \Phi^{-1}(\partial D) = 0 \).

Let \(\varepsilon > 0 \) be given. According to Lemma 2.2 we have \(P(T < \infty) = 1 \). So there exists a real number \(c > 0 \) such that \(P(T \leq c - 1) \geq 1 - \varepsilon \).

We choose \(n_0 \) such that for \(n \geq n_0 \)
\[(3.5) \quad |Q_n \Pi_s^{-1}(T^e < \infty) - P^s(T^e < \infty)| \leq \varepsilon. \]
(According to Lemma 2.4 \(T^e < \infty \) is a continuity set with respect to \(P^e \). (3.5) then follows by Donsker's theorem.)

We infer from (3.5) and the setting of \(c \):
\[(3.6) \quad P(\Phi_s \Pi_s \neq \Phi) \leq \varepsilon, \]
\[Q_n(\Phi e \Pi e \neq \Phi) \leq 2\varepsilon. \]

(We have \(\{\Phi, \Pi e = \Phi\} \cap \{T < \infty\} = \{T^e \Pi e < \infty\} = \{T \leq c - 1\}\).)

We choose \(n_1 \geq n_0 \) such that for \(n \geq n_1 \)

\[|Q_n(\Phi e \Pi e)^{-1}(A) - P^o \Phi e^{-1}(A)| \leq \varepsilon. \]

(The element \(u \) doesn’t belong to \(\partial A \) because we assumed \(A \subset D \). It is easily seen that \((\Phi e \Pi e)^{-1}(\partial A) \subset \Phi^{-1}(\partial A) \) holds, so we infer that \(P(\Phi e \Pi e)^{-1}(\partial A) = P^o \Phi e^{-1}(\partial A) = 0 \) and the existence of an \(n_1 \), such that (3.8) holds then follows from (3.3).)

For \(n \geq n_1 \) we have:

\[
\begin{align*}
|Q_n \Phi^{-1}(A) - P\Phi^{-1}(A)| & \leq |Q_n \Phi^{-1}(A) - Q_n(\Phi e \Pi e)^{-1}(A)| \\
& \quad + |Q_n(\Phi e \Pi e)^{-1}(A) - P^o \Phi e^{-1}(A)| \\
& \quad + |P(\Phi e \Pi e)^{-1}(A) - P\Phi^{-1}(A)| \\
& \leq Q_n(\Phi \neq \Phi e \Pi e) + \varepsilon + P(\Phi \neq \Phi e \Pi e) \leq 4\varepsilon.
\end{align*}
\]

So \(\lim_{n \to \infty} Q_n \Phi^{-1}(A) = P\phi^{-1}(A) \) which is (3.4) and the proof is complete.

So far we have proved that \(Y^+ \) converges weakly to \(P\Phi^{-1} \) which is \(W(T + t) - W(T) \) \(0 \leq t \leq 1 \). It remains to identify \(W(T +, \cdot) - W(T) \) with the Brownian meander \(W^+ \). But this clearly follows from Iglehart’s result. We give a sketch of a proof using the methods of the present paper: Let \(X = \pm 1 \) each with probability \(\frac{1}{2} \). Set \(\mu_n = \inf\{k \leq n: \text{the sequence } S_n, \ldots, S_k \text{ does not change sign}\} \) and let \(\nu_n = n - \mu_n \) (remark that \(\nu_n \geq 1 \)). We define \(\bar{Y}_n(t) \) as follows:

\[
\bar{Y}_n(k/n) = (1/n) |S_{k/n}| \quad \text{for } 0 \leq k \leq n \text{ and linearly interpolated elsewhere.}
\]

\(\bar{Y}_n(\cdot) \) has the same distribution as \(Y^+_{\nu_n}(\cdot) \) where \(\{Y^+_{\nu_n}\}_{\nu_n} \) and \(\nu_n \) are independent. Define \(\tau^e: C^1 \to [0, 1] \) by \(\tau^e(f) = \inf\{t \in [0, 1]: f(s) \text{ does not change sign for } s \in [t, 1] \} \). Further, define \(\Psi: C^1 \to C^1 \) by \(\Psi(f)(t) = |(1 - \tau^e - \tau f(\tau^e + (1 - \tau^e) t)| \) for \(\tau^e \in [0, 1] \), and \(\Psi(f) \) identically zero for \(\tau^e = 1 \). We then have \(\bar{Y}_n = \Psi(Y_n) \), which is identical in law to \(Y^+ \). Now \(\tau^e = \tau = \sup\{t \in [0, 1]: f(t) = 0\} \) \(P^1 \)-a.s.

(This can be proved in the same way as the statements of Lemma 2.3.) So \(W^+ \) has the same distribution as \(\Psi(W) \). It can be shown by the same methods as in Lemma 2.4 and 2.5 that \(\Psi \) is \(P^1 \)-a.s. continuous on \((C^1, \rho) \). The continuous mapping theorem implies \(\bar{Y}_n \to W^+ \) and so \(Y^+_{\nu_n} \to W^+ \) in distribution. By Theorem 3.2 \(Y^+_{\nu_n} \to W(T +, \cdot) - W(T) \). Clearly \(\nu_n \to \infty \) in distribution. This is sufficient for \(Y^+_{\nu_n} \to W(T +, \cdot) - W(T) \) because \(\{Y^+_{\nu_n}\} \) and \(\nu_n \) are independent. It follows that \(W^+ \) and \(W(T +, \cdot) - W(T) \) have the same distribution.

Acknowledgment. I would like to thank L. Rogge and the referee for helping in many ways to improve the original manuscript.

REFERENCES

FACHBEREICH STATISTIK
UNIVERSITÄT KONSTANZ
D-775 KONSTANZ
POSTFACH 7733
GERMANY