Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-23238

Burkhard, N; Herzog, B A; Husmann, L; Pazhenkottil, A P; Burger, I A; Buechel, R R; Valenta, I; Wyss, C A; Kaufmann, P A (2010). Coronary calcium score scans for attenuation correction of quantitative PET/CT (13)N-ammonia myocardial perfusion imaging. European Journal of Nuclear Medicine and Molecular Imaging, 37(3):517-521.

Accepted Version
View at publisher


PURPOSE: The aim of this study was to evaluate whether ECG-triggered coronary calcium scoring (CCS) scans can be used for attenuation correction (AC) to quantify myocardial blood flow (MBF) and coronary flow reserve (CFR) assessed by PET/CT with (13)N-ammonia. METHODS: Thirty-five consecutive patients underwent a (13)N-ammonia PET/CT scan at rest and during standard adenosine stress. MBF values were calculated using AC maps obtained from the ECG-triggered CCS scan during inspiration and validated against MBF values calculated using standard non-gated transmission scans for AC. CFR was calculated as the ratio of hyperaemic over resting MBF. In all 35 consecutive patients intraobserver variability was assessed by blinded repeat analysis for both AC methods. RESULTS: There was an excellent correlation between CT AC and CCS for global MBF values at rest (n = 35, r = 0.94, p < 0.001) and during stress (n = 35, r = 0.97, p < 0.001) with narrow Bland-Altman (BA) limits of agreement (-0.21 to 0.10 ml/min per g and -0.41 to 0.30 ml/min per g) as well as for global CFR (n = 35, r = 0.96, p < 0.001, BA -0.27 to 0.34). The excellent correlation was preserved on the segmental MBF analysis for both rest and stress (n = 1190, r = 0.93, p < 0.001, BA -0.60 to 0.50) and for CFR (n = 595, r = 0.87, p < 0.001, BA -0.71 to 0.74). In addition, reproducibility proved excellent for global CFR by CT AC (n = 35, r = 0.91, p < 0.001, BA -0.42-0.58) and CCS scans (n = 35, r = 0.94, p < 0.001, BA -0.34-0.45). CONCLUSION: Use of attenuation maps from CCS scans allows accurate quantitative MBF and CFR assessment with (13)N-ammonia PET/CT.


20 citations in Web of Science®
21 citations in Scopus®
Google Scholar™



84 downloads since deposited on 19 Oct 2009
17 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Nuclear Medicine
04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:March 2010
Deposited On:19 Oct 2009 08:21
Last Modified:05 Apr 2016 13:30
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:10.1007/s00259-009-1271-1
PubMed ID:19774376

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page