Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-23321

Fischer, M D; Huber, G; Beck, S C; Tanimoto, N; Muehlfriedel, R; Fahl, E; Grimm, C; Wenzel, A; Remé, C E; van de Pavert, S A; Wijnholds, J; Pacal, M; Bremner, R; Seeliger, M W (2009). Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS ONE, 4(10):e7507.

[img]
Preview
Published Version
PDF
2MB

View at publisher

Abstract

BACKGROUND: Optical coherence tomography (OCT) is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration. METHODOLOGY/PRINCIPAL FINDINGS: We achieved to adapt a commercial 3(rd) generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Leber's congenital amaurosis), retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE) due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified. CONCLUSIONS/SIGNIFICANCE: We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical assessment of therapeutic strategies.

Citations

78 citations in Web of Science®
74 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

36 downloads since deposited on 20 Oct 2009
9 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Ophthalmology Clinic
DDC:610 Medicine & health
Language:English
Date:2009
Deposited On:20 Oct 2009 11:51
Last Modified:12 Nov 2014 12:25
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Funders:Deutsche Forschungsgemeinschaft (DFG, grants Se837/5-2, Se837/6-1, Se837/7-1), German Ministry of Education and Research (BMBF grant 0314106), European Union grants LSHG-CT-512036 and EU HEALTH-F2-2008-200234, Tistou and Charlotte Kerstan Foundation
Publisher DOI:10.1371/journal.pone.0007507
PubMed ID:19838301

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page