Quick Search:

is currently disabled due to reindexing of the ZORA database. Please use Advanced Search.
uzh logo
Browse by:

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-23574

Guesmia, S (2009). Some convergence results for quasilinear parabolic boundary value problems in cylindrical domains of large size. Nonlinear Analysis: Theory, Methods & Applications, 70(9):3320-3331.

[img] PDF - Registered users only


The goal of this paper is to study the asymptotic behavior of the solution of the quasilinear parabolic boundary value problems defined on cylindrical domains when one or several directions go to infinity. We show that the dimension of the space can be reduced and the rate of convergence is analyzed. The evolution p-Laplacian equations and the generalized heat problems are considered.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
DDC:510 Mathematics
Date:1 May 2009
Deposited On:06 Nov 2009 07:23
Last Modified:02 Dec 2012 01:23
Publisher DOI:10.1016/j.na.2008.04.036
Related URLs:http://www.ams.org/mathscinet-getitem?mr=2503078
Citations:Google Scholar™
Scopus®. Citation Count: 2

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page