We construct the holonomy groupoid of any singular foliation. In the regular case this groupoid coincides with the usual holonomy groupoid of Winkelnkemper ([H. E. Winkelnkemper, The graph of a foliation, Ann. Glob. Anal. Geom. 1 (3) (1983), 51–75.]); the same holds in the singular cases of [J. Pradines, How to define the differentiable graph of a singular foliation, C. Top. Geom. Diff. Cat. XXVI(4) (1985), 339–381.], [B. Bigonnet, J. Pradines, Graphe d'un feuilletage singulier, C. R. Acad. Sci. Paris 300 (13) (1985), 439–442.], [C. Debord, Local integration of Lie algebroids, Banach Center Publ. 54 (2001), 21–33.], [C. Debord, Holonomy groupoids of singular foliations, J. Diff. Geom. 58 (2001), 467–500.], which from our point of view can be thought of as being “almost regular”. In the general case, the holonomy groupoid can be quite an ill behaved geometric object. On the other hand it often has a nice longitudinal smooth structure. Nonetheless, we use this groupoid to generalize to the singular case Connes' construction of the C*-algebra of the foliation. We also outline the construction of a longitudinal pseudo-differential calculus; the analytic index of a longitudinally elliptic operator takes place in the K-theory of our C*-algebra.

In our construction, the key notion is that of a bi-submersion which plays the role of a local Lie groupoid defining the foliation. Our groupoid is the quotient of germs of these bi-submersions with respect to an appropriate equivalence relation.

Androulidakis, I; Skandalis, G (2009). *The holonomy groupoid of a singular foliation.* Journal für die Reine und Angewandte Mathematik, 626:1-37.

## Abstract

We construct the holonomy groupoid of any singular foliation. In the regular case this groupoid coincides with the usual holonomy groupoid of Winkelnkemper ([H. E. Winkelnkemper, The graph of a foliation, Ann. Glob. Anal. Geom. 1 (3) (1983), 51–75.]); the same holds in the singular cases of [J. Pradines, How to define the differentiable graph of a singular foliation, C. Top. Geom. Diff. Cat. XXVI(4) (1985), 339–381.], [B. Bigonnet, J. Pradines, Graphe d'un feuilletage singulier, C. R. Acad. Sci. Paris 300 (13) (1985), 439–442.], [C. Debord, Local integration of Lie algebroids, Banach Center Publ. 54 (2001), 21–33.], [C. Debord, Holonomy groupoids of singular foliations, J. Diff. Geom. 58 (2001), 467–500.], which from our point of view can be thought of as being “almost regular”. In the general case, the holonomy groupoid can be quite an ill behaved geometric object. On the other hand it often has a nice longitudinal smooth structure. Nonetheless, we use this groupoid to generalize to the singular case Connes' construction of the C*-algebra of the foliation. We also outline the construction of a longitudinal pseudo-differential calculus; the analytic index of a longitudinally elliptic operator takes place in the K-theory of our C*-algebra.

In our construction, the key notion is that of a bi-submersion which plays the role of a local Lie groupoid defining the foliation. Our groupoid is the quotient of germs of these bi-submersions with respect to an appropriate equivalence relation.

## Citations

## Altmetrics

## Downloads

## Additional indexing

Item Type: | Journal Article, refereed, original work |
---|---|

Communities & Collections: | 07 Faculty of Science > Institute of Mathematics |

Dewey Decimal Classification: | 510 Mathematics |

Language: | English |

Date: | January 2009 |

Deposited On: | 11 Nov 2009 13:52 |

Last Modified: | 05 Apr 2016 13:31 |

Publisher: | De Gruyter |

ISSN: | 0075-4102 |

Publisher DOI: | https://doi.org/10.1515/CRELLE.2009.001 |

Related URLs: | http://arxiv.org/abs/math/0612370 http://www.ams.org/mathscinet-getitem?mr=2492988 |

## Download

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.

You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.