UZH-Logo

Maintenance Infos

Concentration under scaling limits for weakly pinned Gaussian random walks


Bolthausen, E; Funaki, T; Otobe, T (2009). Concentration under scaling limits for weakly pinned Gaussian random walks. Probability Theory and Related Fields, 143(3-4):441-480.

Abstract

We study scaling limits for d-dimensional Gaussian random walks perturbed by an attractive force toward a certain subspace of $$\mathbb {R}^d$$, especially under the critical situation that the rate functional of the corresponding large deviation principle admits two minimizers. We obtain different type of limits, in a positive recurrent regime, depending on the co-dimension of the subspace and the conditions imposed at the final time under the presence or absence of a wall. The motivation comes from the study of polymers or (1 + 1)-dimensional interfaces with δ-pinning.

We study scaling limits for d-dimensional Gaussian random walks perturbed by an attractive force toward a certain subspace of $$\mathbb {R}^d$$, especially under the critical situation that the rate functional of the corresponding large deviation principle admits two minimizers. We obtain different type of limits, in a positive recurrent regime, depending on the co-dimension of the subspace and the conditions imposed at the final time under the presence or absence of a wall. The motivation comes from the study of polymers or (1 + 1)-dimensional interfaces with δ-pinning.

Citations

6 citations in Web of Science®
6 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 11 Nov 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:2009
Deposited On:11 Nov 2009 14:33
Last Modified:05 Apr 2016 13:31
Publisher:Springer
ISSN:0178-8051
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:10.1007/s00440-007-0132-8
Related URLs:http://www.ams.org/mathscinet-getitem?mr=2475669
Permanent URL: http://doi.org/10.5167/uzh-23592

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations