UZH-Logo

Combined use of relative and absolute dating techniques for detecting signals of Alpine landscape evolution during the late Pleistocene and early Holocene


Favilli, F; Egli, M; Brandova, D; Ivy-Ochs, S; Kubik, P W; Cherubini, P; Mirabella, A; Sartori, G; Giaccai, D; Haeberli, W (2009). Combined use of relative and absolute dating techniques for detecting signals of Alpine landscape evolution during the late Pleistocene and early Holocene. Geomorphology, 112(1-2):48-66.

Abstract

A combination of three relative and two absolute(numerical) dating techniques, applied on nine soil profiles in an Alpine environment located in Val di Rabbi (Trentino, Northern Italy), was used to improve the investigation methodology of Alpine sites in response to climate change and to reconstruct the chronology of late Pleistocene and early Holocene landscape evolution. The degree of podzolisation, clay mineral evolution and the element mass balances of each site were investigated. Furthermore, the stable fraction of the soil organic matter (SOM) was extracted with 10% H2O2 and 14C-dated. The age of the organic residues was compared with the age of charcoal fragments found in one of the studied soils and with the age of rock boulders obtained by surface exposure dating (SED) with cosmogenic 10Be. Numerical dating and weathering
characteristics of the soils showed a fairly good agreement and enabled a relative and absolute differentiation of landscape elements. The combination of 14C-dating of SOM and SED indicated that deglaciation processes in Val di Rabbi were already far advanced by around 14000 cal BP and that glacier oscillations affected the highest part of the region until about 9000 cal BP. The development of clay minerals is time-dependent and reflects weathering intensity. We found a close link between secondary clay minerals like smectite or vermiculite and soil age as obtained by the dating of the organic residues after the H2O2 treatment.
Calculated element mass balances strongly correlated with the ages derived from 14C measurements. Old soils have lost a major part of base cations (up to 75% compared to the parent material), Fe and Al, which indicates a continuous high weathering intensity. Results of the chemical and mineralogical analyses were in good agreement with numerical dating techniques, showing the dynamics of an Alpine landscape within a relatively small area. The combination of relative and absolute dating techniques is a promising tool for the reconstruction of landscape history in high-elevation Alpine areas on siliceous substrates.

A combination of three relative and two absolute(numerical) dating techniques, applied on nine soil profiles in an Alpine environment located in Val di Rabbi (Trentino, Northern Italy), was used to improve the investigation methodology of Alpine sites in response to climate change and to reconstruct the chronology of late Pleistocene and early Holocene landscape evolution. The degree of podzolisation, clay mineral evolution and the element mass balances of each site were investigated. Furthermore, the stable fraction of the soil organic matter (SOM) was extracted with 10% H2O2 and 14C-dated. The age of the organic residues was compared with the age of charcoal fragments found in one of the studied soils and with the age of rock boulders obtained by surface exposure dating (SED) with cosmogenic 10Be. Numerical dating and weathering
characteristics of the soils showed a fairly good agreement and enabled a relative and absolute differentiation of landscape elements. The combination of 14C-dating of SOM and SED indicated that deglaciation processes in Val di Rabbi were already far advanced by around 14000 cal BP and that glacier oscillations affected the highest part of the region until about 9000 cal BP. The development of clay minerals is time-dependent and reflects weathering intensity. We found a close link between secondary clay minerals like smectite or vermiculite and soil age as obtained by the dating of the organic residues after the H2O2 treatment.
Calculated element mass balances strongly correlated with the ages derived from 14C measurements. Old soils have lost a major part of base cations (up to 75% compared to the parent material), Fe and Al, which indicates a continuous high weathering intensity. Results of the chemical and mineralogical analyses were in good agreement with numerical dating techniques, showing the dynamics of an Alpine landscape within a relatively small area. The combination of relative and absolute dating techniques is a promising tool for the reconstruction of landscape history in high-elevation Alpine areas on siliceous substrates.

Citations

23 citations in Web of Science®
26 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

209 downloads since deposited on 18 Nov 2009
27 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:November 2009
Deposited On:18 Nov 2009 09:00
Last Modified:05 Apr 2016 13:32
Publisher:Elsevier
ISSN:0169-555X
Publisher DOI:10.1016/j.geomorph.2009.05.003
Permanent URL: http://doi.org/10.5167/uzh-23717

Download

[img]
Filetype: PDF (Verlags-PDF) - Registered users only
Size: 1MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations