Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-2372

Clauss, M; Schwarm, A; Ortmann, S; Streich, W J; Hummel, J (2007). A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores. Comparative Biochemistry and Physiology - Part A: Molecular and Integrative Physiology, 148(2):249-265.

[img] PDF - Registered users only
View at publisher
PDF (Additional Material)


As gut capacity is assumed to scale linearly to body mass (BM), and dry matter intake (DMI) to metabolic body weight (BM(0.75)), it has been proposed that ingesta mean retention time (MRT) should scale to BM(0.25) in herbivorous mammals. We test these assumptions with the most comprehensive literature data collations (n=74 species for gut capacity, n=93 species for DMI and MRT) to date. For MRT, only data from studies was used during which DMI was also recorded. Gut capacity scaled to BM(1.06). In spite of large differences in feeding regimes, absolute DMI (kg/d) scaled to BM(0.76) across all species tested. Regardless of this allometry inherent in the dataset, there was only a very low allometric scaling of MRT with BM(0.14) across all species. If species were divided according to the morphophysiological design of their digestive tract, there was non-significant scaling of MRT with BM(0.04) in colon fermenters, BM(0.08) in non-ruminant foregut fermenters, BM(0.06) in browsing and BM(0.04) in grazing ruminants. In contrast, MRT significantly scaled to BM(0.24) (CI 0.16-0.33) in the caecum fermenters. The results suggest that below a certain body size, long MRTs cannot be achieved even though coprophagy is performed; this supports the assumption of a potential body size limitation for herbivory on the lower end of the body size range. However, above a 500 g-threshold, there is no indication of a substantial general increase of MRT with BM. We therefore consider ingesta retention in mammalian herbivores an example of a biological, time-dependent variable that can, on an interspecific level, be dissociated from a supposed obligatory allometric scaling by the morphophysiological design of the digestive tract. We propose that very large body size does not automatically imply a digestive advantage, because long MRTs do not seem to be a characteristic of very large species only. A comparison of the relative DMI (g/kg(0.75)) with MRT indicates that, on an interspecific level, higher intakes are correlated to shorter MRTs in caecum, colon and non-ruminant foregut fermenters; in contrast, no significant correlation between relative DMI and MRT is evident in ruminants.


91 citations in Web of Science®
89 citations in Scopus®
Google Scholar™



75 downloads since deposited on 29 Apr 2008
15 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Deposited On:29 Apr 2008 10:15
Last Modified:05 Apr 2016 12:22
Publisher DOI:10.1016/j.cbpa.2007.05.024
PubMed ID:17643330

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page