UZH-Logo

Maintenance Infos

A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores


Clauss, Marcus; Schwarm, A; Ortmann, S; Streich, W J; Hummel, J (2007). A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores. Comparative Biochemistry and Physiology - Part A: Molecular and Integrative Physiology, 148(2):249-265.

Abstract

As gut capacity is assumed to scale linearly to body mass (BM), and dry matter intake (DMI) to metabolic body weight (BM(0.75)), it has been proposed that ingesta mean retention time (MRT) should scale to BM(0.25) in herbivorous mammals. We test these assumptions with the most comprehensive literature data collations (n=74 species for gut capacity, n=93 species for DMI and MRT) to date. For MRT, only data from studies was used during which DMI was also recorded. Gut capacity scaled to BM(1.06). In spite of large differences in feeding regimes, absolute DMI (kg/d) scaled to BM(0.76) across all species tested. Regardless of this allometry inherent in the dataset, there was only a very low allometric scaling of MRT with BM(0.14) across all species. If species were divided according to the morphophysiological design of their digestive tract, there was non-significant scaling of MRT with BM(0.04) in colon fermenters, BM(0.08) in non-ruminant foregut fermenters, BM(0.06) in browsing and BM(0.04) in grazing ruminants. In contrast, MRT significantly scaled to BM(0.24) (CI 0.16-0.33) in the caecum fermenters. The results suggest that below a certain body size, long MRTs cannot be achieved even though coprophagy is performed; this supports the assumption of a potential body size limitation for herbivory on the lower end of the body size range. However, above a 500 g-threshold, there is no indication of a substantial general increase of MRT with BM. We therefore consider ingesta retention in mammalian herbivores an example of a biological, time-dependent variable that can, on an interspecific level, be dissociated from a supposed obligatory allometric scaling by the morphophysiological design of the digestive tract. We propose that very large body size does not automatically imply a digestive advantage, because long MRTs do not seem to be a characteristic of very large species only. A comparison of the relative DMI (g/kg(0.75)) with MRT indicates that, on an interspecific level, higher intakes are correlated to shorter MRTs in caecum, colon and non-ruminant foregut fermenters; in contrast, no significant correlation between relative DMI and MRT is evident in ruminants.

As gut capacity is assumed to scale linearly to body mass (BM), and dry matter intake (DMI) to metabolic body weight (BM(0.75)), it has been proposed that ingesta mean retention time (MRT) should scale to BM(0.25) in herbivorous mammals. We test these assumptions with the most comprehensive literature data collations (n=74 species for gut capacity, n=93 species for DMI and MRT) to date. For MRT, only data from studies was used during which DMI was also recorded. Gut capacity scaled to BM(1.06). In spite of large differences in feeding regimes, absolute DMI (kg/d) scaled to BM(0.76) across all species tested. Regardless of this allometry inherent in the dataset, there was only a very low allometric scaling of MRT with BM(0.14) across all species. If species were divided according to the morphophysiological design of their digestive tract, there was non-significant scaling of MRT with BM(0.04) in colon fermenters, BM(0.08) in non-ruminant foregut fermenters, BM(0.06) in browsing and BM(0.04) in grazing ruminants. In contrast, MRT significantly scaled to BM(0.24) (CI 0.16-0.33) in the caecum fermenters. The results suggest that below a certain body size, long MRTs cannot be achieved even though coprophagy is performed; this supports the assumption of a potential body size limitation for herbivory on the lower end of the body size range. However, above a 500 g-threshold, there is no indication of a substantial general increase of MRT with BM. We therefore consider ingesta retention in mammalian herbivores an example of a biological, time-dependent variable that can, on an interspecific level, be dissociated from a supposed obligatory allometric scaling by the morphophysiological design of the digestive tract. We propose that very large body size does not automatically imply a digestive advantage, because long MRTs do not seem to be a characteristic of very large species only. A comparison of the relative DMI (g/kg(0.75)) with MRT indicates that, on an interspecific level, higher intakes are correlated to shorter MRTs in caecum, colon and non-ruminant foregut fermenters; in contrast, no significant correlation between relative DMI and MRT is evident in ruminants.

Citations

92 citations in Web of Science®
90 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

79 downloads since deposited on 29 Apr 2008
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Language:English
Date:2007
Deposited On:29 Apr 2008 10:15
Last Modified:13 Nov 2016 06:13
Publisher:Elsevier
ISSN:1095-6433
Publisher DOI:https://doi.org/10.1016/j.cbpa.2007.05.024
PubMed ID:17643330
Permanent URL: https://doi.org/10.5167/uzh-2372

Download

[img]
Filetype: PDF - Registered users only
Size: 626kB
View at publisher
[img]
Preview
Filetype: PDF (Additional Material)
Size: 123kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations