UZH-Logo

The conserved zinc finger protein VAB-23 is an essential regulator of epidermal morphogenesis in Caenorhabditis elegans


Pellegrino, M W; Gasser, R B; Sprenger, F; Stetak, A; Hajnal, A (2009). The conserved zinc finger protein VAB-23 is an essential regulator of epidermal morphogenesis in Caenorhabditis elegans. Developmental Biology, 336(1):84-93.

Abstract

Caenorhabditis elegans is an excellent model to observe cell movements and shape changes during the morphogenesis of the egg-shaped embryo into an elongated tube-like larva. Although much is known about the structural determinants involved in epidermal morphogenesis, relatively little is known about the transcriptional and post-transcriptional regulatory networks involved. Here, we describe the identification and functional characterization of the novel nuclear protein VAB-23, which belongs to a conserved protein family found in all metazoans. C. elegans VAB-23 is essential for ventral closure and elongation of the embryo. Time-lapse analysis indicates that VAB-23 is required for the formation of proper cell contacts between contralateral pairs of ventral epidermal cells. Tissue-specific rescue experiments reveal a function of VAB-23 in ventral neuroblasts that control the enclosure of the embryo by the overlaying epidermal cells. Finally, we provide evidence suggesting a role of VAB-23 in post-transcriptional gene regulation. We thus propose that VAB-23 regulates the expression of multiple secreted guidance cues in ventral neuroblasts that direct the migration of the overlaying epidermal cells. Members of the VAB-23 family may perform similar functions during morphogenesis in other metazoans.

Caenorhabditis elegans is an excellent model to observe cell movements and shape changes during the morphogenesis of the egg-shaped embryo into an elongated tube-like larva. Although much is known about the structural determinants involved in epidermal morphogenesis, relatively little is known about the transcriptional and post-transcriptional regulatory networks involved. Here, we describe the identification and functional characterization of the novel nuclear protein VAB-23, which belongs to a conserved protein family found in all metazoans. C. elegans VAB-23 is essential for ventral closure and elongation of the embryo. Time-lapse analysis indicates that VAB-23 is required for the formation of proper cell contacts between contralateral pairs of ventral epidermal cells. Tissue-specific rescue experiments reveal a function of VAB-23 in ventral neuroblasts that control the enclosure of the embryo by the overlaying epidermal cells. Finally, we provide evidence suggesting a role of VAB-23 in post-transcriptional gene regulation. We thus propose that VAB-23 regulates the expression of multiple secreted guidance cues in ventral neuroblasts that direct the migration of the overlaying epidermal cells. Members of the VAB-23 family may perform similar functions during morphogenesis in other metazoans.

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

80 downloads since deposited on 20 Nov 2009
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Uncontrolled Keywords:Morphogenesis; C. elegans; Epidermis; Embryo
Language:English
Date:30 September 2009
Deposited On:20 Nov 2009 09:03
Last Modified:05 Apr 2016 13:32
Publisher:Elsevier
ISSN:0012-1606
Publisher DOI:10.1016/j.ydbio.2009.09.036
PubMed ID:19799893
Permanent URL: http://doi.org/10.5167/uzh-23852

Download

[img]
Preview
Filetype: PDF
Size: 922kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations