Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-2393

Clauss, M; Frey, R; Kiefer, B; Lechner-Doll, M; Loehlein, W; Polster, C; Rössner, G E; Streich, W J (2003). The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Oecologia, 136(1):14-27.

[img]
Preview
PDF
339kB

View at publisher

Abstract

An oft-cited nutritional advantage of large body size is that larger animals have lower relative energy requirements and that, due to their increased gastrointestinal tract (GIT) capacity, they achieve longer ingesta passage rates, which allows them to use forage of lower quality. However, the fermentation of plant material cannot be optimized endlessly; there is a time when plant fibre is totally fermented, and another when energy losses due to methanogenic bacteria become punitive. Therefore, very large herbivores would need to evolve adaptations for a comparative acceleration of ingesta passage. To our knowledge, this phenomenon has not been emphasized in the literature to date. We propose that, among the extant herbivores, elephants, with their comparatively fast passage rate and low digestibility coefficients, are indicators of a trend that allowed even larger hindgut fermenting mammals to exist. The limited existing anatomical data on large hindgut fermenters suggests that both a relative shortening of the GIT, an increase in GIT diameter, and a reduced caecum might contribute to relatively faster ingesta passage; however, more anatomical data is needed to verify these hypotheses. The digestive physiology of large foregut fermenters presents a unique problem: ruminant-and nonruminant-forestomachs were designed to delay ingesta passage, and they limit food intake as a side effect. Therefore, with increasing body size and increasing absolute energy requirements, their relative capacity has to increase in order to compensate for this intake limitation. It seems that the foregut fermenting ungulates did not evolve species in which the intake-limiting effect of the foregut could be reduced, e.g. by special bypass structures, and hence this digestive model imposed an intrinsic body size limit. This limit will be lower the more the natural diet enhances the ingesta retention and hence the intake-limiting effect. Therefore, due to the mechanical characteristics of grass, grazing ruminants cannot become as big as the largest browsing ruminant. Ruminants are not absent from the very large body size classes because their digestive physiology offers no particular advantage, but because their digestive physiology itself intrinsically imposes a body size limit. We suggest that the decreasing ability for colonic water absorption in large grazing ruminants and the largest extant foregut fermenter, the hippopotamus, are an indication of this limit, and are the outcome of the competition of organs for the available space within the abdominal cavity. Our hypotheses are supported by the fossil record on extinct ruminant/tylopod species which did not, with the possible exception of the Sivatheriinae, surpass extant species in maximum body size. In contrast to foregut fermentation, the GIT design of hindgut fermenters allows adaptations for relative passage acceleration, which explains why very large extinct mammalian herbivores are thought to have been hindgut fermenters.

Citations

73 citations in Web of Science®
72 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

110 downloads since deposited on 28 Apr 2008
13 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
DDC:570 Life sciences; biology
630 Agriculture
Language:English
Date:2003
Deposited On:28 Apr 2008 15:18
Last Modified:30 Oct 2014 15:47
Publisher:Springer
ISSN:0029-8549
Publisher DOI:10.1007/s00442-003-1254-z
PubMed ID:12712314

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page