UZH-Logo

Maintenance Infos

MR angiography with parallel acquisition for assessment of the visceral arteries: comparison with conventional MR angiography and 64-detector-row computed tomography


Sutter, R; Heilmaier, C; Lutz, A M; Weishaupt, D; Seifert, Burkhardt; Willmann, J K (2009). MR angiography with parallel acquisition for assessment of the visceral arteries: comparison with conventional MR angiography and 64-detector-row computed tomography. European Radiology, 19(11):2679-2688.

Abstract

The purpose of the study was to retrospectively compare three-dimensional gadolinium-enhanced magnetic resonance angiography (conventional MRA) with MRA accelerated by a parallel acquisition technique (fast MRA) for the assessment of visceral arteries, using 64-detector-row computed tomography angiography (MDCTA) as the reference standard. Eighteen patients underwent fast MRA (imaging time 17 s), conventional MRA (29 s) and MDCTA of the abdomen and pelvis. Two independent readers assessed subjective image quality and the presence of arterial stenosis. Data were analysed on per-patient and per-segment bases. Fast MRA yielded better subjective image quality in all segments compared with conventional MRA (P = 0.012 for reader 1, P = 0.055 for reader 2) because of fewer motion-induced artefacts. Sensitivity and specificity of fast MRA for the detection of arterial stenosis were 100% for both readers. Sensitivity of conventional MRA was 89% for both readers, and specificity was 100% (reader 1) and 99% (reader 2). Differences in sensitivity between the two types of MRA were not significant for either reader. Interobserver agreement for the detection of arterial stenosis was excellent for fast (kappa = 1.00) and good for conventional MRA (kappa = 0.76). Thus, subjective image quality of visceral arteries remains good on fast MRA compared with conventional MRA, and the two techniques do not differ substantially in the grading of arterial stenosis, despite the markedly reduced acquisition time of fast MRA.

The purpose of the study was to retrospectively compare three-dimensional gadolinium-enhanced magnetic resonance angiography (conventional MRA) with MRA accelerated by a parallel acquisition technique (fast MRA) for the assessment of visceral arteries, using 64-detector-row computed tomography angiography (MDCTA) as the reference standard. Eighteen patients underwent fast MRA (imaging time 17 s), conventional MRA (29 s) and MDCTA of the abdomen and pelvis. Two independent readers assessed subjective image quality and the presence of arterial stenosis. Data were analysed on per-patient and per-segment bases. Fast MRA yielded better subjective image quality in all segments compared with conventional MRA (P = 0.012 for reader 1, P = 0.055 for reader 2) because of fewer motion-induced artefacts. Sensitivity and specificity of fast MRA for the detection of arterial stenosis were 100% for both readers. Sensitivity of conventional MRA was 89% for both readers, and specificity was 100% (reader 1) and 99% (reader 2). Differences in sensitivity between the two types of MRA were not significant for either reader. Interobserver agreement for the detection of arterial stenosis was excellent for fast (kappa = 1.00) and good for conventional MRA (kappa = 0.76). Thus, subjective image quality of visceral arteries remains good on fast MRA compared with conventional MRA, and the two techniques do not differ substantially in the grading of arterial stenosis, despite the markedly reduced acquisition time of fast MRA.

Citations

4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 18 Nov 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:18 Nov 2009 13:28
Last Modified:05 Apr 2016 13:33
Publisher:Springer
ISSN:0938-7994
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:https://doi.org/10.1007/s00330-009-1473-8
PubMed ID:19526242
Permanent URL: https://doi.org/10.5167/uzh-23963

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations