UZH-Logo

Maintenance Infos

The relationship of food intake and ingesta passage predicts feeding ecology in two different megaherbivore groups


Clauss, Marcus; Streich, W J; Schwarm, A; Ortmann, S; Hummel, J (2007). The relationship of food intake and ingesta passage predicts feeding ecology in two different megaherbivore groups. Oikos, 116(2):209-216.

Abstract

Digestion, especially of plant material, is a time-dependent process. In herbivores, an increase in food intake is usually correlated to an acceleration of ingesta passage through the gut, and could hence depress digestive efficiency. Therefore, the nature of the relationship between food intake and ingesta passage (i.e. whether the increase in ingesta passage due to the increase in food intake is mild or drastic) should determine the flexibility of the feeding strategy of herbivore and omnivore species. Using two megaherbivore groups, the elephants and the hippopotamuses, as examples from opposing ends of the range of potential adaptations to this problem, we demonstrate that the species-specific relationship of food intake and ingesta passage can precisely predict feeding ecology and activity budgets. In hippos, the distinct acceleration in ingesta passage due to increased intake limits the additional energy gained from eating more forage, and explains the comparatively low food intake and short feeding times generally observed in these animals. In elephants, increased food intake only leads to a very moderate increase of ingesta passage, thus theoretically allowing to optimize energy gain by eating more, which is in accord with the high food intake and long feeding times observed in these animals. We suggest that the characterization of the intake-passage relationship in herbi- and omnivorous species is of much higher ecological relevance than the determination of a supposedly species-specific "passage time/mean retention time".

Digestion, especially of plant material, is a time-dependent process. In herbivores, an increase in food intake is usually correlated to an acceleration of ingesta passage through the gut, and could hence depress digestive efficiency. Therefore, the nature of the relationship between food intake and ingesta passage (i.e. whether the increase in ingesta passage due to the increase in food intake is mild or drastic) should determine the flexibility of the feeding strategy of herbivore and omnivore species. Using two megaherbivore groups, the elephants and the hippopotamuses, as examples from opposing ends of the range of potential adaptations to this problem, we demonstrate that the species-specific relationship of food intake and ingesta passage can precisely predict feeding ecology and activity budgets. In hippos, the distinct acceleration in ingesta passage due to increased intake limits the additional energy gained from eating more forage, and explains the comparatively low food intake and short feeding times generally observed in these animals. In elephants, increased food intake only leads to a very moderate increase of ingesta passage, thus theoretically allowing to optimize energy gain by eating more, which is in accord with the high food intake and long feeding times observed in these animals. We suggest that the characterization of the intake-passage relationship in herbi- and omnivorous species is of much higher ecological relevance than the determination of a supposedly species-specific "passage time/mean retention time".

Citations

42 citations in Web of Science®
40 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 28 Apr 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Language:English
Date:2007
Deposited On:28 Apr 2008 14:39
Last Modified:09 Oct 2016 06:15
Publisher:Wiley-Blackwell
ISSN:0030-1299
Publisher DOI:https://doi.org/10.1111/j.2006.0030-1299.15461.x
Permanent URL: https://doi.org/10.5167/uzh-2404

Download

[img]
Filetype: PDF - Registered users only
Size: 188kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations