Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-24042

Phan, T T; Abozguia, K; Nallur Shivu, G; Mahadevan, G; Ahmed, I; Williams, L; Dwivedi, G; Patel, K; Steendijk, P; Ashrafian, H; Henning, A; Frenneaux, M (2009). Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. Journal of the American College of Cardiology, 54(5):402-409.

[img] PDF - Registered users only
View at publisher


OBJECTIVES: We sought to evaluate the role of exercise-related changes in left ventricular (LV) relaxation and of LV contractile function and vasculoventricular coupling (VVC) in the pathophysiology of heart failure with preserved ejection fraction (HFpEF) and to assess myocardial energetic status in these patients. BACKGROUND: To date, no studies have investigated exercise-related changes in LV relaxation and VVC as well as in vivo myocardial energetic status in patients with HFpEF. METHODS: We studied 37 patients with HFpEF and 20 control subjects. The VVC and time to peak LV filling (nTTPF, a measure of LV active relaxation) were assessed while patients were at rest and during exercise by the use of radionuclide ventriculography. Cardiac energetic status (creatine phosphate/adenosine triphosphate ratio) was assessed by the use of (31)P magnetic resonance spectroscopy at 3-T. RESULTS: When patients were at rest, nTTPF and VVC were similar in patients with HFpEF and control subjects. The cardiac creatine phosphate/adenosine triphosphate ratio was reduced in patients with HFpEF versus control subjects (1.57 +/- 0.52 vs. 2.14 +/- 0.63; p = 0.003), indicating reduced energy reserves. Peak maximal oxygen uptake and the increase in heart rate during maximal exercise were lower in patients with HFpEF versus control subjects (19 +/- 4 ml/kg/min vs. 36 +/- 8 ml/kg/min, p < 0.001, and 52 +/- 16 beats/min vs. 81 +/- 14 beats/min, p < 0.001). The relative changes in stroke volume and cardiac output during submaximal exercise were lower in patients with HFpEF versus control subjects (ratio exercise/rest: 0.99 +/- 0.34 vs. 1.25 +/- 0.47, p = 0.04, and 1.36 +/- 0.45 vs. 2.13 +/- 0.72, p < 0.001). The nTTPF decreased during exercise in control subjects but increased in patients with HFpEF (-0.03 +/- 12 s vs. +0.07 +/- 0.11 s; p = 0.005). The VVC decreased on exercise in control subjects but was unchanged in patients with HFpEF (-0.01 +/- 0.15 vs. -0.25 +/- 0.19; p < 0.001). CONCLUSIONS: Patients with HFpEF have reduced cardiac energetic reserve that may underlie marked dynamic slowing of LV active relaxation and abnormal VVC during exercise.


76 citations in Web of Science®
98 citations in Scopus®
Google Scholar™



1 download since deposited on 24 Nov 2009
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Deposited On:24 Nov 2009 10:45
Last Modified:05 Apr 2016 13:33
Publisher DOI:10.1016/j.jacc.2009.05.012
PubMed ID:19628114

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page