UZH-Logo

Maintenance Infos

Dopaminergic modulation of motor maps in rat motor cortex: an in vivo study


Hosp, J A; Molina-Luna, K; Hertler, B; Atiemo, C O; Luft, A R (2009). Dopaminergic modulation of motor maps in rat motor cortex: an in vivo study. Neuroscience, 159(2):692-700.

Abstract

While the primary motor cortex (M1) is know to receive dopaminergic projections, the functional role of these projections is poorly characterized. Here, it is hypothesized that dopaminergic signals modulate M1 excitability and somatotopy, two features of the M1 network relevant for movement execution and learning. To test this hypothesis, movement responses evoked by electrical stimulation using an electrode grid implanted epidurally over the caudal motor cortex (M1) were assessed before and after an intracortical injection of D1- (R-(+),8-chloro,7-hydroxy,2,3,4,5,-tetra-hydro,3-methyl,5-phenyl,1-H,3-benzazepine maleate, SCH 23390) or D2-receptor (raclopride) antagonists into the M1 forelimb area of rats. Stimulation mapping of M1 was repeated after 24 h. D2-inhibition reduced the size of the forelimb representation by 68.5% (P<0.001). Movements thresholds, i.e., minimal currents required to induce movement responses increased by 37.5% (P<0.001), and latencies increased by 35.9% (P<0.01). Twenty-4 h after the injections these effects were reversed. No changes were observed with D1-antagonist or vehicle. By enhancing intracortical excitability and signal transduction, D2-mediated dopaminergic signaling may affect movement execution, e.g. by enabling task-related muscle activation synergies, and learning.

While the primary motor cortex (M1) is know to receive dopaminergic projections, the functional role of these projections is poorly characterized. Here, it is hypothesized that dopaminergic signals modulate M1 excitability and somatotopy, two features of the M1 network relevant for movement execution and learning. To test this hypothesis, movement responses evoked by electrical stimulation using an electrode grid implanted epidurally over the caudal motor cortex (M1) were assessed before and after an intracortical injection of D1- (R-(+),8-chloro,7-hydroxy,2,3,4,5,-tetra-hydro,3-methyl,5-phenyl,1-H,3-benzazepine maleate, SCH 23390) or D2-receptor (raclopride) antagonists into the M1 forelimb area of rats. Stimulation mapping of M1 was repeated after 24 h. D2-inhibition reduced the size of the forelimb representation by 68.5% (P<0.001). Movements thresholds, i.e., minimal currents required to induce movement responses increased by 37.5% (P<0.001), and latencies increased by 35.9% (P<0.01). Twenty-4 h after the injections these effects were reversed. No changes were observed with D1-antagonist or vehicle. By enhancing intracortical excitability and signal transduction, D2-mediated dopaminergic signaling may affect movement execution, e.g. by enabling task-related muscle activation synergies, and learning.

Citations

19 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

233 downloads since deposited on 24 Nov 2009
46 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neurology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:24 Nov 2009 08:18
Last Modified:05 Apr 2016 13:34
Publisher:Elsevier
ISSN:0306-4522
Publisher DOI:https://doi.org/10.1016/j.neuroscience.2008.12.056
PubMed ID:19162136
Permanent URL: https://doi.org/10.5167/uzh-24353

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher
[img]
Filetype: PDF - Registered users only
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations