PLASMA-MEMBRANE H⁺-ATPase-DEPENDENT CITRATE EXUDATION FROM CLUSTER ROOTS OF PHOSPHATE-DEFICIENT WHITE LUPIN

Nicola Tomasi¹,²*, Tobias Kretzschmar², Luca Espen³, Laure Weisskopf², Anja Thoe Fuglsang⁴, Michael Gjedde Palmgren⁴, Günter Neumann⁵, Zeno Varanini⁶, Roberto Pinton¹, Enrico Martinoia² and Stefano Cesco¹

1. Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, I-33100 Udine, Italy
2. Laboratory of Molecular Plant Physiology, Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
3. Dipartimento di Produzione Vegetale, University of Milan, Via Celoria, 2, I-20133 Milano, Italy
4. Centre for Membrane Pumps in Cells and Disease—PUMPKIN, Danish National Research Foundation, Department of Plant Biology and Biotechnology, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
5. Institute of Plant Nutrition, University of Hohenheim, D-70593 Stuttgart, Germany
6. Dipartimento di Scienze, Tecnologie e Mercati della Vite e del Vino, University of Verona, Via della Pieve, 70, I-37029 San Floriano (VR), Italy

*: To whom correspondence should be addressed:
Nicola Tomasi
White lupin (*Lupinus albus* L.) is able to grow on soils with sparingly available phosphate (P) by producing specialized structures called cluster roots. To mobilize sparingly soluble P forms in soils, cluster roots release substantial amounts of carboxylates and concomitantly acidify the rhizosphere. The relationship between acidification and carboxylate exudation is still largely unknown. In the present work, we studied the linkage between organic acids (malate and citrate) and proton exudation in cluster roots of P-deficient white lupin. After the illumination started, citrate exudation increased transiently and reached a maximum after 5 hours. This effect was accompanied by a strong acidification of the external medium and alkalization of the cytosol, as evidenced by *in vivo* NMR analysis. Fusicoccin, an activator of the plasma-membrane H⁺-ATPase, stimulated citrate exudation, whereas vanadate, an inhibitor of the H⁺-ATPase, reduced citrate exudation. The burst of citrate exudation was associated with an increase in expression of
the \textit{LHA1} plasma-membrane H\textsuperscript{+}-ATPase gene, an increased amount of H\textsuperscript{+}-ATPase protein, a shift in pH optimum of the enzyme and post-translational modification of an H\textsuperscript{+}-ATPase protein involving binding of activating 14-3-3 protein. Taken together, our results indicate a close link in cluster roots of P-deficient white lupin between the burst of citrate exudation and plasma-membrane H\textsuperscript{+}-ATPase catalyzed proton efflux.

KEYWORDS:

\textit{Lupinus albus}, organic acids, root exudates, malate, rhizosphere, proton pump, phosphorus, carboxylate release, pH
The availability of phosphate (P) is a widespread limiting factor for plant growth (Handreck 1997; Marschner 1995). To deal with this situation, plants have developed several strategies to improve P acquisition. The most common one is the association with mycorrhizal fungi. If plants do not engage in symbiosis, they adapt to phosphate-poor soils by increasing the quantity and length of roots and root hairs, and in many cases by increasing the synthesis and the release of P-mobilizing root exudates, such as organic acids, phenolics, and acid phosphatases (Dinkelaker, Römheld & Marschner 1989; Neumann et al. 2000; Tomasi et al. 2008).

Some plants have developed special root structures in response to phosphate starvation, such as the dauciform roots found in the Cyperaceae family (Davies, Briarty & Rieley 1973; Lamont 1974; Shane, Dixon & Lambers 2005) and the cluster or proteoid roots of many Proteaceae (Purnell 1960). Cluster roots or proteoid roots are generally bottlebrush-like root structures. Many studies have demonstrated the capacity of these roots to increase the availability of soil phosphate (Dinkelaker et al. 1989; Neumann et al. 1999; Shane et al. 2003). Phosphate mobilization is suggested to occur predominantly via the release of large amounts of organic acid anions by the cluster roots (Dinkelaker et al. 1989; Gardner, Parbery & Barber 1982; Jones & Darrah 1994; Lambers et al. 2002).

White lupin (Lupinus albus L.) has often been used as a model plant for studying P-deficiency response and cluster-root formation (Neumann & Martinoia 2002). In cluster roots of white lupin, carboxylate release follows a spatial and temporal pattern. In the first growing phase, cluster roots release low amounts of organic acids, mainly malate. In mature proteoid roots, a burst of citrate exudation can be observed which is accompanied by acidification of the
rhizosphere (Neumann et al., 2000). Citrate is likely to be exuded via an anion channel, since exudation can be inhibited by anthracene-9-carboxylic acid (Neumann et al. 1999). In a more recent study, a citrate-specific channel from lupin root protoplasts was described (Zhang, Ryan & Tyerman 2004) which could be responsible for massive citrate exudation; however, regulatory mechanisms of carboxylate exudation still need to be elucidated. A correlation between citrate and proton extrusion has been suggested by several authors (Ligaba et al. 2004; Ohno, Koyama & Hara 2003; Sas, Rengel & Tang 2001; Shen et al. 2005; Zhu et al. 2005); however, in these studies different or even contrasting results were obtained, possibly due to the use of different experimental approaches and culture conditions.

The involvement of the plasma-membrane (PM) H⁺-ATPase in organic anion release via proton extrusion in white lupin was suggested by Kania et al. (2001) and Yan et al. (2002). Using isolated plasma-membrane vesicles from whole proteoid roots and lateral roots grown in the presence or absence of phosphate, these authors showed that proteoid roots exhibited an increased PM H⁺-ATPase activity that was correlated to changes in the amount of the corresponding protein. Ligaba et al. (2004) also observed an enhanced release of citrate, but not of malate, associated with the increased activity of the plasma-membrane proton pump in cluster roots of P-deficient Lupinus pilosus. Recently Shen et al. (2005), who investigated citrate exudation in aluminum-stressed soybean, demonstrated that citrate exudation was coupled to changes in the activity of the PM H⁺-ATPase, involving transcriptional and post-translational modification of the enzyme. Furthermore it has been reported that release of carboxylates from cluster roots of P-deficient white lupin may show diurnal variations (Watt & Evans 1999).
The goal of this work was to study the linkage between organic acids (malate and citrate) and proton exudation in fully grown cluster roots of P-deficient white lupin, highlighting the involvement of PM H⁺-ATPase activity and the regulatory aspects.

MATERIAL AND METHODS

Plant material and growth conditions
White lupin plants (*Lupinus albus* L. cv. Amiga, Südwestdeutsche Saatzucht, Rastatt, Germany) were grown in hydroponic conditions as described by Massonneau et al. (2001), with the exception that 48 plants were grown in 50-liter containers. Seeds were soaked overnight in aerated water, and then kept for 3 days in the dark followed by one day in the light, on filter paper soaked in 0.2 mM CaCl₂ to allow them to germinate. Seedlings were transferred to a hydroponic culture medium (0.05 mM Fe(III)-EDTA, 2.5 mM Ca(NO₃)₂, 0.9 mM K₂SO₄, 0.8 mM MgSO₄, 38 μM H₃BO₃, 12.5 μM MnSO₄, 1.25 μM CuSO₄, 1.25 μM ZnSO₄, 0.33 μM (NH₄)₆Mo₇O₂₄, 62.5 μM KCl and with 0.25 mM KH₂PO₄ in case of P-sufficient condition). Plants were grown at 22°C and 65% relative humidity with a light period of 16 h at 200 μmol m⁻²s⁻¹ for 5 weeks. For most of the experiments, the root samples were collected from P-deficient white lupins at different times after the start of the light (HALS). Only the fully grown parts of cluster root were collected (see also Fig. 1), corresponding to the immature and mature parts described by Massonneau et al. (2001). For the measurement of the cytosolic and vacuolar pH under –P and +P condition, we harvested the apical part (the last centimeter) of lateral roots.
Quantification of citrate and malate released by cluster roots

Collection of root exudates was performed according to Massonneau et al. (2001). Fully grown cluster roots were collected, pre-incubated in 10 mM CaSO₄ and incubated in 10 mM CaSO₄ in 2-(N-morpholino) ethanesulfonic acid and 1,3-bis[tris(hydroxymethyl)-methylamino] (MES-BTP) 15 mM pH 6 in the absence or presence of 10 µM fusicoccin or 500 µM vanadate for one hour at room temperature with agitation. Root weight was determined and roots were used for the detection of root-induced change of pH (see below). Sample solutions were frozen at –80°C until processing. Citrate or malate content in the exudates was determined using the kit for citric acid or malic acid test (Boehringer, Mannheim, Germany) according to the manufacturer’s instructions. Each dataset represents the mean of 3 independent experiments run in triplicates, processed and analyzed statistically (t-test, N=3, P<0.05) using Sigma Plot 8 (Systat software, Point Richmond, USA).

Detection of root-induced change of rhizospheric pH

The acidification capability of cluster roots was determined as described by Massonneau et al. (2001). After collection of the exudates, roots were placed on a glass plate covered by a 2-mm layer of 1% agar containing 0.04% (w/v) bromocresol purple at pH 6.0. Roots, which strongly acidify the medium, induce a color shift of the pH indicator from purple to yellow, corresponding to a pH below 5.5. Images were captured after 30 minutes of incubation.

NMR measurements and P concentration

Roots were collected and equilibrated for 10 min in the perfusion medium (0.5 mM CaSO₄, 1 mM MES-BTP, pH 6.1). ³¹P-NMR spectra were recorded on a standard broad-band 10-mm
probe on a Bruker AMX 600 spectrometer (Bruker Analytische Messtechnik GmbH, Rheinstetten-Forchheim, Germany) equipped with Indy computer running XWIN-NMR version 2.6. *In vivo* experiments were carried out by packing excised root segments in a 10 mm diameter NMR tube equipped with a perfusion system connected to a peristaltic pump in which the aerated, thermo-regulated (26°C) medium [0.5 mM CaSO₄, 1 mM MES-BTP (pH 6.1)] flowed at 10 ml min⁻¹.

³¹P-NMR spectra were recorded at 242.9 MHz without lock, with a waltz-based broad-band proton decoupling and a spectral window of 16 kHz. Chemical shifts were measured relative to the signal from a glass capillary containing 33 mM MDP, which is at 18.5 ppm relative to the signal from 85% H₃PO₄. The spectra were determined using a 90° pulse angle and fast acquisition conditions (1⁸ recycle time). Resonance assignments were performed according to Roberts et al. (1980) and Kime et al. (1982). Intracellular pH values were calculated from the chemical shift of the cytosolic and vacuolar Pi resonance after construction of a standard titration curve (Roberts et al. 1981).

Isolation of plasma membranes

Plasma-membrane vesicles were isolated from fully grown cluster roots as following Santi et al. (1995) and Fisher-Schliebs et al. (1994). Briefly, 5 g of roots were homogenized with a mortar and pestle in a freshly prepared ice-cold extraction medium (250 mM sucrose, 2 mM MgSO₄, 2 mM ATP, 10% (v/v) glycerol, 10 mM glycerol-1-phosphate, 0.16% (w/v) BSA, 2 mM EGTA, 2 mM DTT, 5.7% (w/v) choline-iodide, 1 mM PMSF, 20 μg ml⁻¹ chymostatin, 10 nM okadeic acid and 25 mM MES-BTP pH 7.6). Four milliliters of medium per g fresh weight of root tissue were used.
The homogenates were filtered through four layers of cheesecloth and the suspensions were subjected to differential centrifugation steps at 2°C: 1,500 g for 5 min (pellets discarded); 9,800 g for 20 min (pellets discarded); 83,400 g for 30 min (pellets recovered); and 83,400 g for a further 30 min. Microsomes, gently resuspended in 1.2 mL of homogenization medium, were loaded onto a discontinuous sucrose gradient made by layering 2 mL of sucrose solution (1.13 g cm$^{-3}$) onto a 3 mL sucrose (1.17 g cm$^{-3}$) cushion, and centrifuged at 107600 g for 2 h. The sucrose solutions were prepared in 5 mM MES-BTP, pH 7.4, and contained all of the protectants present in the homogenization medium. Vesicles migrating to the 1.13/1.17 g cm$^{-3}$ interface were collected, diluted with homogenization medium, and centrifuged at 122,400 g for 30 min. The pellets were resuspended in a medium containing 250 mM sucrose, 10 % (v/v) glycerol, 1 mM DTT, 50 μg mL$^{-1}$ chymostatin, 10 nM okadeic acid and 2 mM MES-BTP pH 7.0, were immediately frozen in liquid nitrogen, and stored at -80°C until use.

Measurement of PM H$^+$-ATPase activity and membrane protein content

Plasma-membrane H$^+$-ATPase activity was measured at 38°C in a 0.6 mL reaction (50 mM MES-BTP pH 6.5 or pH 6.2 to 8.0 for the pH dependency assay, 5 mM MgSO$_4$, 100 mM KNO$_3$, 600 μM Na$_2$MoO$_4$, 1.5 mM NaN$_3$, 5 mM ATP-BTP pH 6.5, 0.01 % (w/v) Brij 58 (polyoxyethylene 20 cetyl ether), plus or minus 100 μM V$_2$O$_5$; the vanadate-dependent activity was 85±3%). The reaction was started by addition of membrane vesicles containing 0.5 μg of total protein; after 30 min, the reaction was stopped and color developed as previously described by Santi et al. (1995). Inorganic phosphate was quantified spectrophotometrically at 705 nm as described by Forbush (1983).
Protein content was determined as described by Bradford (1976), using BSA as standard, after solubilizing membrane vesicles with 0.5 M NaOH (Gogstad & Krutnes 1982).

**Western blots**

Equal amounts of protein isolated at the different time points were loaded, electrophoresed in an 8% w/v SDS-PAGE gel and transferred to a Protran BA 83 nylon membrane (0.2 μm, Biorad, Hercules, USA) with a semi-dry transfer system (Trans-blot SD, Biorad, Hercules, USA). For the PM H⁺-ATPase blot, a polyclonal antibody against the C-terminal part of the *Arabidopsis thaliana* AHA3 plasma-membrane H⁺-ATPase. The 14-3-3-protein blot was performed using an antiserum against barley 14-3-3, which was kindly provided by David B. Collinge (Royal Veterinary and Agricultural University, Frederiksberg C, Denmark). Secondary antibodies (Goat anti-rabbit IgG alkaline phosphatase conjugate, Biorad, Hercules, USA) were used and the immunodetection was performed using the standard BCIP/NBT protocol (Promega, Madison, USA). Relative-intensity band quantifications were determined using ImageJ (1.40g; http://rsb.info.nih.gov/ij/).

**Gene expression analysis**

At the harvesting times (0, 1, 3, 5, 7, 9 and 11 hours after the initiation of the light period), fully grown cluster roots were collected, immediately frozen in liquid nitrogen and conserved until further processing at -80°C. RNA extractions were performed using TRIzol® reagent (Invitrogen, Carlsbad, USA) following manufacturer’s instructions and contaminant genomic DNA was removed with 10 U of DNase I (GE Healthcare, Munich, Germany). Total-RNA samples were cleaned up using the phenol:chloroform protocol (Maniatis, Sambrook & Fritsch 1989). 1 μg of...
total RNA (checked for quality and quantity using a spectrophotometer, followed by a migration in an agarose gel) of each sample was retrotranscribed using 1 pmol of Oligo d(T)\textsubscript{23}VN (New England Biolabs, Beverly, USA), 15 U Prime RNase Inhibitor (Eppendorf, Hamburg, Germany) and 10 U M-MulV RNase H\textsuperscript{+} for 1 hour at 42°C (Finnzymes, Helsinki, Finland) following the manufacturer’s instruction. After RNA digestion with 1U RNase A (USB, Cleveland, USA) for 1 hour at 37°C, gene expression analyzes were performed by adding 0.1 µL of the cDNA to FluoCycleTM sybr green (20 µl final volume; Euroclone, Pero, Italy) in a DNA Engine Opticon Real-Time PCR Detection (Biorad, Hercules, USA). Primers used (Tm= 58°C) were the following: for \textit{LHA1} gene (AY989893), CCATTATTCTCTTTTGGGATA and GAAGACAAAGCTCAATAACCAGAA, for \textit{LHA2} gene (AY989895), GGAGACTGGCCGAAGACTT and CGGGAATTGAGGCAATACTC, for \textit{LHA3} gene (AY989894), cagggcaattttccaagaa and acctccagacagcaata, and as housekeeping gene (polyubiquitin; DQ118117), GCACCCTAGCGACTACAAC and CCGGTAAGGGTCTTGACAAA). Triplicates were performed on three independent experiments; analyses of real-time result were performed using Opticon Monitor 2 software (Biorad, Hercules, USA) and R (version 2.7.0; http://www.r-project.org/) with the qPCR package (version 1.1-4; http://www.dr-spiess.de/qpcR.html). Efficiencies of amplification were calculated following the authors’ indications (Ritz & Spiess 2008): PCR efficiencies were 92.3 and 81.4% for \textit{LHA1} and \textit{LHA2} genes, respectively. Computation of the graphical representation and statistical validation (t-test) were performed using SigmaPlot 8.0 (Systat software, Point Richmond, USA), considering the differences in the PCR efficiency and setting up that \textit{LHA1} gene expression at time 0 equal 1.
RESULTS

Citrate, malate and proton exudation by cluster roots

In order to get a better settlement of the diurnal variation of citrate and malate release, we collected exudates released from fully grown white lupin cluster roots (Fig. 1), corresponding to the immature and mature stages according to the nomenclature of Massonneau et al. (2001), over a period of 11 hours after starting the light period (HALS). Figure 2A shows that citrate exudation progressively increased from 1 HALS to reach a maximum at 5 HALS, where it had approximately doubled. Thereafter, citrate exudation decreased to levels lower than those recorded at the beginning of the light period. Exudation rates for malate (Fig 2B) were always lower than those recorded for citrate and did not change significantly. These results indicate that there is a differential regulation between citrate and malate exudations.

To investigate whether the enhanced citrate exudation was accompanied by changes in root external medium acidification, fully grown cluster roots were placed on an agar gel containing the pH indicator bromocresol purple that turns yellow in response to acidification. The time dependence of agar acidification by cluster roots (Fig. 3) corresponded well with that of citrate exudation (Fig. 2A). The basal citrate and malate release observed at the beginning or the end of the light period (Fig. 2, A and B) was not accompanied by detectable acidification of the agar medium (Fig. 3).

In order to verify whether the PM H\(^+\)-ATPase was involved in the development of a higher citrate exudation rate, cluster roots were treated with fusicoccin, which permanently activates the plasma-membrane proton pump (Johansson, Sommarin & Larsson 1993; Palmgren 1998).
Fusicoccin stimulated proton release from cluster roots (Fig. 3) and was accompanied by an increase in exudation of citrate, but not of malate (Fig. 2, A and B). The potency of fusicoccin was strongest in the beginning of the light period and negligible as citrate exudation peaked at 5 HALS (Fig. 2A and 4). These results indicate that activation of the proton pump induces citrate release, however at 5 HALS, citrate exudation cannot be stimulated further suggesting that the proton pump does not respond to fusicoccin, i.e. it is already operating at maximal activity.

Vanadate is a well known inhibitor of P-type ATPases, a family of ion pumps to which the PM H\(^+\)-ATPase belongs (Cocucci, Ballarin-Denti & Marrè 1980). Application of vanadate to white lupin cluster roots strongly limited medium acidification (Fig. 3). However, citrate release was only partially affected by the inhibitor (Fig. 4), the degree of inhibition being dependent on the time at which cluster roots were treated. At 1 HALS, citrate exudation was almost insensitive to vanadate (Fig. 4) whereas vanadate was able to completely inhibit the enhanced element of citrate release, reverting the exudation rate to the level measured at 1 HALS (Fig. 4). This strongly suggests an involvement of PM H\(^+\)-ATPase in the increased level of citrate release in cluster roots of P-deficient white lupin.

**Time-course of cytosolic pH fluctuations**

In order to verify whether the burst of citrate and proton release in fully grown cluster roots were reflected by changes in the cytosolic pH, an *in vivo* NMR spectroscopy approach was used. For this purpose, the chemical shift (\(\delta\)) of phosphate (\(^{31}\)P) resonance was followed. Cytosolic and vacuolar pH values were calculated using a standard titration curve designed for a “classical” cellular composition (Roberts, Wadejardetzky & Jardetzky 1981; Spickett, Smirnoff & Ratcliffe
Figure 5 illustrates typical NMR profiles measured on roots of P-deficient and P-
sufficient white lupin.

Table 1 shows that the cytosolic pH changed paralleling the release of protons and citrate (Fig
2A; Fig. 3). At the beginning of the light period, the cytosolic pH was 7.8 and subsequently
increased to reach a maximum of pH 8.2 after 5 hours where citrate exudation also peaked (Fig.
2A). This alkalinization could be a consequence of proton extrusion from the cytosol to the
external solution (Fig. 3). Following the maximum alkalinization at 5 HALS, the cytosolic pH
decreased. Addition of fusicoccin similarly resulted in an alkalinization of the cytosol (Table 1)
as has also been observed previously (Espen et al. 2000).

Activity, amount and regulation of the PM H\(^{+}\)-ATPase

To confirm that the PM H\(^{+}\)-ATPase was activated in concomitancy with organic acid release,
plasma-membrane vesicles were isolated from fully grown cluster roots at different time points
and characterized their plasma-membrane H\(^{+}\)-ATPase activities (Fig. 6). Notably, the activity of
PM H\(^{+}\)-ATPase in vesicles changed during the light period and followed a pattern similar to that
observed for citrate and proton exudation (see Fig. 2A and 3). Thus, it progressively increased up
to 5 HALS and subsequently decreased down to a basal value at 11 HALS. These results clearly
indicate the concomitance of the citrate-exudation burst (Fig. 2A), the acidification of the root
external medium (Fig. 3) and the increase in the ATP hydrolytic activity of the PM H\(^{+}\)-ATPase
(Fig. 6).

In order to determine whether the enhancement of PM H\(^{+}\)-ATPase activity occurred at the
transcriptional and/or the post-transcriptional level we determined: i) the expression levels of
three PM H\(^{+}\)-ATPase genes isolated from white lupin roots; ii) the amount of PM H\(^{+}\)-ATPase
protein; iii) the amount of 14-3-3 bound to the plasma membranes; and iv) the pH-dependency of
the PM H^+-ATPase activity, which is a measure of its regulatory state (Palmgren 1998).

Transcriptional activity of PM H^+-ATPase genes was investigated by real-time RT-PCR analyses
using primers designed from gene sequences of three different H^+-ATPase isoforms known to be
present in white lupin: LHA1 (AY989893), LHA2 (AY989895) and LHA3 (AY989894). PM H^+-
ATPase genes showed different expression patterns during the light period (Fig. 7). A distinct
peak in transcript abundance was observed for LHA1 at 3 HALS; LHA2 was expressed at a lower
level as compared to LHA1, although showing maximal transcript abundance at 7 HALS.  
Expression of LHA3 was not detectable over the whole experimental period (data not shown).

In order to investigate whether changes in activity of PM H^+-ATPase could be explained by
changes in the amount of the corresponding protein, we performed Western blot analyses using
polyclonal antibodies targeted against the C-terminal domain of the enzyme (Fig. 8). Following
the onset of the light period, an increase in the amount of H^+-ATPase protein was indeed
observed, with a peak at 5 HALS; thereafter, the protein level progressively decreased. The
changes in PM H^+-ATPase protein levels followed the pattern observed for the ATP hydrolytic
activity of the pump (see Fig. 6).

14-3-3 protein is involved in the activation of plasma-membrane proton pump by binding to its
C-terminal domain (Johansson et al. 1993; Palmgren 1998). The possible occurrence of a post-
translational regulation of the plasma-membrane proton pump was analyzed by observing
changes in the amount of activating 14-3-3 protein bound to plasma membranes and by
analyzing the pH-dependency of the enzyme, which moves to a slightly more alkaline maximum
in response to post-translational activation (Palmgren 1998). Indeed, there was a significant
increase in the amount of 14-3-3 protein bound to plasma membranes during the first hours (Fig.
The pH optimum of PM H\(^+\)-ATPase activity was 6.5 at the beginning of the light period (Fig. 3), which is consistent with the optimum of the down-regulated enzyme (Regenberg et al. 1995). During the light period, concomitantly with the burst of citrate exudation, the pH optimum shifted to more alkaline values (6.8 and 7.0 at 3 and 5 HALS, respectively). Taken together, these results suggest that post-transcriptional regulation of the plasma-membrane proton pump had occurred at the time of the enhanced release of citrate.

DISCUSSION

Adaptation of white lupin to low-P soils is generally attributed to its capacity to form cluster roots, from which massive release of carboxylates (citrate and, to a lesser extent, malate) takes place (Gardner, Parbery & Barber 1981; Keerthisinghe et al. 1998). It has been shown that carboxylate release occurs according to a developmentally defined program (Massonneau et al. 2001) and may show diurnal variations, with higher rates being recorded during the light period than in the dark (Watt & Evans 1999).

In the present study we have defined in detail the time-course, during the illumination period, of citrate and malate release rates from immature and mature cluster roots of P-deficient white lupin (Fig. 1). The results show that the citrate exudation progressively increased from 1 to 5 hours after the start of the light period (HALS), then decreased to a minimum at 11 HALS (Fig. 2A). A similar pattern was reported by Hocking and Jeffery (2004) for *Lupinus luteus*. Our data also show that white lupin cluster roots are able to release malate, but interestingly at lower rates and...
without showing any significant change during the considered period demonstrating a
differential exudation pattern between citrate and malate (Fig. 2, A and B).
A strong acidification of the rhizosphere has been reported to occur concomitantly with the
release of carboxylates (Neumann et al. 2000). Several studies have addressed the question
whether a link exists between carboxylate and proton exudation. Due to the form (anionic) of
carboxylic acids at cytosolic pH values (Ma et al. 2001) and the presence of citrate transport
systems at the plasma membrane of white lupin (Zhang et al. 2004), protons are likely to be
needed for energization and charge compensation during release of carboxylates. Increased
proton release has also been related to the increased cation/anion influx ratio of P-deficient plants
(Shen et al. 2005) and to the presence of the rhizobium-legume symbiosis (Sas et al. 2001).
Activation of the PM H⁺-ATPase has been suggested to be responsible for proton exudation
associated with citrate export in white lupin (Kania et al. 2001; Yan et al. 2002). Recently Zhu et
al. (2005), studying the effect of the PM H⁺-ATPase effectors fusicoccin and vanadate on release
of carboxylates (malate and citrate) and several ions (cations and anions) from cluster roots of P-
deficient white lupin, concluded that proton extrusion may serve as charge balance for malate
release, while sodium or potassium might act as counterions for citrate. Results here presented
suggest that the counterions might change in function of how much citrate is released; i.e. it
seems there are two different mechanisms of citrate release: one might be an anion channel as
shown by Zhang et al. (2004) and another might be a multidrug and toxic compound extrusion
system (MATE), which transports citrate but not malate, as hypothesized by Furukawa et al.
(2007).
In the present study we show that rhizosphere acidification by immature and mature proteoid
roots is concomitant with the burst of citrate exudation (Fig. 3). As expected, proton release was
enhanced by fusicoccin treatment. Citrate extrusion could also be enhanced by fusicoccin, but not when the rate of release was maximal (at 5 HALS, Fig. 2A and 4). This result indicates that either the proton pump was already fully activated at 5 HALS or that a maximal citrate synthesis or exudation activity has been reached at that time which could not be further increased by activation of the PM H^+-ATPase in response to fusicoccin. After 11 hours of illumination, fusicoccin had only a negligible effect on citrate release while it was still able to stimulate proton efflux, suggesting that at this time the internal supply of citrate might have become limiting. On the other hand, malate release was not affected by the fusicoccin treatment (Fig. 2B). Vanadate virtually abolished rhizosphere acidification (Fig. 3); on the other hand the effect of the inhibitor on citrate release was dependent on the time of application, with a decrease of about 50% being observed at 5 HALS and only of 17% at 1 HALS (Fig. 4).

The marked variations in citrate and proton release from the cluster roots during the light period could conceivably influence the cytosolic pH, therefore we performed time-course measurements with NMR instrumentation (Fig. 5) and observed that during the burst of citrate and proton exudation an alkalinization of the cytosol took place (Tab. 1), indicating that the cellular pH-stat could not fully compensate for the release of protons, even if it is known that the capacity to regulate pH should be increased in white lupin cluster roots; in fact, PEP carboxylase, an enzyme, which is postulated to play an important role in pH regulation, was shown to be up-regulated in these tissues (Johnson, Vance & Allan 1996). The lowest pH values were measured concomitantly with a decrease in proton and citrate efflux (from 7 to 11 HALS). Fusicoccin, applied at 1 HALS, also led to an increase in cytosolic pH (Tab. 1), as a consequence of PM H^+-ATPase activation (Espen et al. 2000).
PM H⁺-ATPase activity also changed during the light period (Fig. 6) closely paralleling citrate and proton extrusion; these modifications were consistent with variations in cytosolic pH. Data on the cytosolic pH and PM H⁺-ATPase activity further highlight the close link between the enhanced exudation of proton and citrate in cluster roots of P-deficient white lupin. Modulation of PM H⁺-ATPase activity have been reported to be due either to altered gene expression or to post-translational modifications (Michelet et al. 1994; Palmgren 1998; Shen et al. 2005). The latter type of regulation is achieved by phosphorylation of the C-terminal auto-inhibitory domain of the PM H⁺-ATPase which enables binding of activating 14-3-3 protein (Fuglsang et al. 1999; Olsson et al. 1998). In our work changes in PM H⁺-ATPase activity (Fig. 6) strictly concomitant with the burst of citrate exudation (Fig. 2A) were paralleled by similar changes in protein amount (Fig. 8); furthermore increased transcript levels for at least one of the genes encoding the three known enzyme isoforms could be recorded (Fig. 7). These data are consistent with a transcriptional regulation of the PM H⁺-ATPase. On the other hand, the shift in pH optimum (Fig. 9) and the pattern of changes in 14-3-3 protein amount (Fig. 8) suggest the occurrence also of a post-translational regulation of the enzyme. Up-regulation of PM H⁺-ATPase due to transcriptional and post-translational modifications has been reported for aluminum-stressed soybean root tips (Shen et al. 2005); furthermore, a transcriptional regulation of PM H⁺-ATPase involving a specific isoform has also been demonstrated in cucumber plants exposed to Fe-deficiency (Santi et al., 2005).

The present study demonstrates for the first time the involvement of a two-component system in organic acid exudation in cluster roots of P-deficient white lupin: one, that sustains a basal rate of malate and citrate release and a second that sustains the burst of citrate exudation which is closely linked to active proton extrusion from the cytosol. Further, the results indicate that two
different mechanisms of organic acid exudation are operating. The first component mediates a
basal rate of malate and citrate release corresponding to about 2 µmol of citrate and 1 µmol of
malate per hour and gram of fresh weight (Fig. 2, A and B, Fig. 4), and is not directly linked to
the PM H\(^+\)-ATPase activity. The second one corresponds to the burst of citrate release (which is
about two fold higher than the basal citrate release) and is strictly PM H\(^+\)-ATPase activity
dependent.

ACKNOWLEDGEMENTS:

This work was supported by the University of Zürich, the Swiss National Foundation within the
National Center of Competence in Research “Plant Survival”, by the Körber Stiftung (Germany)
and by a grant from Italian C.N.R. and Swiss F.N. to Stefano Cesco.
REFERENCES


### Table I. Variations of cytosolic and vacuolar pH of cluster-root cells during the light period.

Cluster roots were collected from cluster roots of 5-week-old P-deficient white lupin at different times after the start of the light period. Cytosolic and vacuolar pH values were derived from the chemical shift (δ) of cellular phosphate resonance after construction of a standard titration curve with or without 10 µM fusicoccin (FC), using $^{31}$P-NMR in *in vivo* experiments. Values are the means of two independent experiments. Data are presented as differences from the cytosolic pH value determined at 1 HALS which was 7.78. The accuracy is calculated as three times the maximum variation observed in the experiments and is equal to ±0.02 pH units for the cytoplasm and ±0.04 pH units for the vacuole. nd stand for not detectable.

<table>
<thead>
<tr>
<th>Hours after light start (HALS)</th>
<th>1</th>
<th>1+FC</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δcytosolic pH</td>
<td>-</td>
<td>0.68</td>
<td>0.13</td>
<td>0.42</td>
<td>-0.07</td>
<td>-0.46</td>
<td>-0.36</td>
</tr>
<tr>
<td>Δvacuolar pH</td>
<td>-2.51</td>
<td>-2.38</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>
FIGURE LEGENDS

Figure 1. Schematic view of a white lupin plant grown for 5-week in a P-deficient nutrient solution and a detailed cluster root. This figure represent typical cluster root and whole plant of white lupin grown for 5-week in nutrient solution without any external supply of phosphate. Moreover, the different parts of the cluster roots are indicated following the nomenclature of Massonneau et al. (2001). In this work, immature and mature parts were collected together and named fully grown cluster root.

Figure 2. Citrate (A) and malate (B) secretion from cluster roots during the light period. Fully grown cluster roots were harvested from 5-week-old P-deficient white lupin at different times after the start of the light period. Exudates were collected after bathing roots for one hour in 10 mM CaSO₄, 15 mM MES-BTP pH 6 with or without 10 µM fusicoccin. Means ± SD of three independent experiments are reported. Capital letters (A, B) refer to statistically significant differences (t-test, N=3, P<0.05) in organic acid secretion of control roots (- fusicoccin). Asterisks indicate a statistically significant (t-test, N=3, P<0.05) effect of fusicoccin treatment.

Figure 3. Acidification capacity of cluster roots during the light period. Fully grown cluster roots were harvested from 5-week-old P-deficient white lupin at different times after the start of the light period. After incubation for 1 hour in 10 mM CaSO₄, 15 mM MES-BTP pH 6 in the absence or presence of 10 µM fusicoccin or 500 µM vanadate, roots were placed for 30 min on an agar gel containing the pH indicator bromocresol purple and adjusted to pH 6. Yellow and purple colors indicate pH values respectively below and above 6.
Figure 4. **Effect of vanadate and fusicoccin on citrate secretion.** Fully grown cluster roots were harvested from 5-week-old P-deficient white lupin at 1 and 5 hours after the start of the light period (HALS). Exudates were collected after bathing roots for one hour in 10 mM CaSO₄, 15 mM MES-BTP pH 6 in the absence or presence of 10 µM fusicoccin or 500 µM vanadate. Means ± SD of three independent experiments, are reported; relative values in comparison with the untreated control at 1 HALS are also shown. Capital letters (A, B, C) refer to statistically significant differences (t-test, N=3, P<0.05).

Figure 5. **In vivo ³¹P-NMR spectra of white lupin cluster roots.** Apical segments of lateral roots (the last centimeter) were harvested from plants grown for 5 weeks in the absence (A) or presence (B) of Pi. Each spectrum was recorded using fast acquisition conditions with a recycle time of 1 s and represents the sum of 2,700 scans. The numbered peaks correspond to: 1) cytosolic phosphate; 2) vacuolar phosphate. The region including cytosolic phosphate is shown also on an expanded scale (4x). The chemical shift of the cytosolic phosphate peaks, reflecting the differences in pH values, is highlighted by a vertical dotted line.

Figure 6. **Plasma-membrane H⁺-ATPase activity in cluster roots during the light period.** Plasma-membrane (PM) vesicles were isolated from cluster roots of 5-week-old P-deficient white lupin at different times after the start of the light period. The enzyme activity was measured at pH 6.5. Data are means ± SD of two independent experiments.
Figure 7. Expression analyses of genes coding for different PM H⁺-ATPase isoforms of cluster roots during the light period. Total RNA was extracted from cluster roots of 5-week-old P-deficient white lupin at different times after the start of the light period. Relative expression of LHA1 and LHA2 genes coding for different PM H⁺-ATPase isoforms of white lupin was analyzed by real-time RT-PCR. Data are means ± SD of three independent experiments. Changes in gene expression were calculated on the basis of expression levels of LHA1 at 1 hour after the start of the light period (HALS); relative expression of LHA2 gene was also illustrated in the insert with a higher magnification. Asterisks indicate a statistically significant (t-test, N=3, P<0.05) difference in expression level of each gene with respect to its expression at 1 HALS.

Figure 8. Western-blot analysis of the PM H⁺-ATPase and 14-3-3 proteins in cluster roots during the light period. Purified plasma membranes isolated from cluster roots of 5-week-old P-deficient white lupin at different times after the start of the light period were used for immunodetection of PM H⁺-ATPase using antibodies raised against the C-terminal part of the Arabidopsis AHA3 PM H⁺-ATPase and of 14-3-3-protein using antibodies raised against the barley 14-3-3 protein. Quantification of western-blot signals is expressed as percentage of that recorded at 1 hour after the start of the light period (HALS). Data of a representative experiment are reported.

Figure 9. pH dependency of PM H⁺-ATPase activity of cluster roots during the light period. Plasma-membrane (PM) vesicles were isolated from cluster roots of 5-week-old P-deficient white lupin at 1, 3, 5, 9 hours after the start of the light period (HALS). The enzyme activity was measured at different pH values in the range between 6.2 and 8.0. Data are means ± SD of two independent experiments.
Figure 2.

A) Malate Exudation [µmol g\(^{-1}\) (FW) h\(^{-1}\)]

B) Citrate secretion [µmol g\(^{-1}\) (FW) h\(^{-1}\)]

- Fusicoccin
+ Fusicoccin

Hours after start of light period (HALS)
<table>
<thead>
<tr>
<th>Hours after light start</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Control</td>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
<td><img src="image3.png" alt="Image" /></td>
<td><img src="image4.png" alt="Image" /></td>
<td><img src="image5.png" alt="Image" /></td>
<td><img src="image6.png" alt="Image" /></td>
</tr>
<tr>
<td>+Fusicoccin</td>
<td><img src="image7.png" alt="Image" /></td>
<td><img src="image8.png" alt="Image" /></td>
<td><img src="image9.png" alt="Image" /></td>
<td><img src="image10.png" alt="Image" /></td>
<td><img src="image11.png" alt="Image" /></td>
<td><img src="image12.png" alt="Image" /></td>
</tr>
<tr>
<td>+Vanadate</td>
<td><img src="image13.png" alt="Image" /></td>
<td><img src="image14.png" alt="Image" /></td>
<td><img src="image15.png" alt="Image" /></td>
<td><img src="image16.png" alt="Image" /></td>
<td><img src="image17.png" alt="Image" /></td>
<td><img src="image18.png" alt="Image" /></td>
</tr>
</tbody>
</table>

1cm
Figure 4.

Citrate secretion [µmol g⁻¹ (FW) h⁻¹]

1 HALS

- Control: 100%
- +Vanadate: 83%
- +Fusicoxin: 164%

5 HALS

- Control: 193%
- +Vanadate: 103%
- +Fusicoxin: 217%
Figure 5.
Figure 6.

ATPase activity [nmol P µg⁻¹ prot h⁻¹]

Hours after start of light period (HALS)

0 20 40 60 80 100 120 140 160
Figure 7.

Relative gene expression over hours after start of light period (HALS) for LHA1 and LHA2.
Figure 8.

<table>
<thead>
<tr>
<th>HALS</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM H⁺-ATPase</td>
<td>100</td>
<td>149</td>
<td>164</td>
<td>113</td>
<td>112</td>
<td>105</td>
</tr>
<tr>
<td>14-3-3</td>
<td>100</td>
<td>185</td>
<td>488</td>
<td>322</td>
<td>407</td>
<td>167</td>
</tr>
</tbody>
</table>

- **HALS**
- **PM H⁺-ATPase** 100 kD
- **14-3-3** 35 kD
Figure 9.

ATPase activity [nmol P µg⁻¹ prot h⁻¹] vs pH value

- 1 HALS
- 3 HALS
- 5 HALS
- 9 HALS
Effects of PM H⁺-ATPase modulators on proton extrusion by cluster roots at the time of maximum exudation. Fully grown cluster roots were harvested from 5-week-old P-deficient white lupin at 5 hours after the start of the light period. After incubation for 1 hour in 10 mM CaSO₄, 15 mM MES-BTP (pH 6) in the absence or presence of 10 µM fusicoccin or 500 µM vanadate, roots were placed for 30 min on an agar gel containing the pH indicator bromocresol purple and adjusted to pH 6. Yellow color indicates pH values below 6.