UZH-Logo

Maintenance Infos

Provenance for Nested Subqueries


Glavic, B; Alonso, G (2009). Provenance for Nested Subqueries. In: 12th International Conference on Extending Database Technology, Saint Petersburg, Russia, 24 March 2009 - 26 March 2009, 982-993.

Abstract

Data provenance is essential in applications such as scientific computing, curated databases, and data warehouses. Several systems have been developed that provide provenance functionality for the relational data model. These systems support only a subset of SQL, a severe limitation in practice since most of the application domains that benefit from provenance information use complex queries. Such queries typically involve nested subqueries, aggregation and/or user defined functions. Without support for these constructs, a provenance management system is of limited use.

In this paper we address this limitation by exploring the problem of provenance derivation when complex queries are involved. More precisely, we demonstrate that the widely used definition of Why-provenance fails in the presence of nested subqueries, and show how the definition can be modified to produce meaningful results for nested subqueries. We further present query rewrite rules to transform an SQL query into a query propagating provenance. The solution introduced in this paper allows us to track provenance information for a far wider subset of SQL than any of the existing approaches. We have incorporated these ideas into the Perm provenance management system engine and used it to evaluate the feasibility and performance of our approach.

Data provenance is essential in applications such as scientific computing, curated databases, and data warehouses. Several systems have been developed that provide provenance functionality for the relational data model. These systems support only a subset of SQL, a severe limitation in practice since most of the application domains that benefit from provenance information use complex queries. Such queries typically involve nested subqueries, aggregation and/or user defined functions. Without support for these constructs, a provenance management system is of limited use.

In this paper we address this limitation by exploring the problem of provenance derivation when complex queries are involved. More precisely, we demonstrate that the widely used definition of Why-provenance fails in the presence of nested subqueries, and show how the definition can be modified to produce meaningful results for nested subqueries. We further present query rewrite rules to transform an SQL query into a query propagating provenance. The solution introduced in this paper allows us to track provenance information for a far wider subset of SQL than any of the existing approaches. We have incorporated these ideas into the Perm provenance management system engine and used it to evaluate the feasibility and performance of our approach.

Citations

Downloads

46 downloads since deposited on 16 Dec 2009
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Uncontrolled Keywords:provenance, query rewrite, nested subqueries
Language:English
Event End Date:26 March 2009
Deposited On:16 Dec 2009 08:14
Last Modified:05 Apr 2016 13:34
Publisher:ACM
Series Name:ACM International Conference Proceeding Series (AICPS)
Number:12
ISBN:978-1-60558-422-5
Official URL:http://dblp.uni-trier.de/db/conf/edbt/edbt2009.html
Permanent URL: http://doi.org/10.5167/uzh-24448

Download

[img]
Preview
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations