Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-24497

Gehrig, P M; Hunziker, P E; Zahariev, S; Pongor, S (2004). Fragmentation pathways of N(G)-methylated and unmodified arginine residues in peptides studied by ESI-MS/MS and MALDI-MS. Journal of the American Society for Mass Spectrometry, 15(2):142-149.

[img]PDF - Registered users only
1200Kb

Abstract

Protein methylation at arginine residues is a prevalent posttranslational modification in eukaryotic cells that has been implicated in processes from RNA-binding and transporting to protein sorting and transcription activation. Three main forms of methylarginine have been identified: N(G)-monomethylarginine (MMA), asymmetric N(G),N(G)-dimethylarginine (aDMA), and symmetric N(G),N'(G)-dimethylarginine (sDMA). To investigate gas-phase fragmentations and characteristic ions arising from methylated and unmodified arginine residues in detail, we subjected peptides containing these residues to electrospray triple-quadrupole tandem mass spectrometry. A variety of low mass ions including (methylated) ammonium, carbodiimidium, and guanidinium ions were observed. Fragment ions resulting from the loss of the corresponding neutral fragments (amines, carbodiimide, and guanidine) from intact molecular ions as well as from N- and C-terminal fragment ions were also identified. Furthermore, the peptides containing either methylated or unmodified arginines gave rise to abundant fragment ions at m/z 70, 112, and 115, for which cyclic ion structures are proposed. Electrospray ionization tandem mass spectra revealed that dimethylammonium (m/z 46) is a specific marker ion for aDMA. A precursor ion scanning method utilizing this fragment ion was developed, which allowed sensitive and specific detection of aDMA-containing peptides even in the presence of a five-fold excess of phosphorylase B digest. Interestingly, regular matrix-assisted laser desorption/ionization mass spectra recorded from aDMA- or sDMA-containing peptides showed metastable fragment ions resulting from cleavages of the arginine side chains. The neutral losses of mono- and dimethylamines permit the differentiation between aDMA and sDMA.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
08 University Research Priority Programs > Systems Biology / Functional Genomics
DDC:570 Life sciences; biology
610 Medicine & health
Language:English
Date:February 2004
Deposited On:16 Dec 2009 15:52
Last Modified:28 Nov 2013 01:48
Publisher:Elsevier
ISSN:1044-0305
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1016/j.jasms.2003.10.002
PubMed ID:14766281
Citations:Web of Science®. Times Cited: 63
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page