UZH-Logo

Maintenance Infos

NovoHMM: a hidden Markov model for de novo peptide sequencing


Fischer, B; Roth, V; Roos, F; Grossmann, J; Baginsky, S; Widmayer, P; Gruissem, W; Buhmann, J M (2005). NovoHMM: a hidden Markov model for de novo peptide sequencing. Analytical Chemistry, 77(22):7265-7273.

Abstract

De novo sequencing of peptides poses one of the most challenging tasks in data analysis for proteome research. In this paper, a generative hidden Markov model (HMM) of mass spectra for de novo peptide sequencing which constitutes a novel view on how to solve this problem in a Bayesian framework is proposed. Further extensions of the model structure to a graphical model and a factorial HMM to substantially improve the peptide identification results are demonstrated. Inference with the graphical model for de novo peptide sequencing estimates posterior probabilities for amino acids rather than scores for single symbols in the sequence. Our model outperforms state-of-the-art methods for de novo peptide sequencing on a large test set of spectra.

De novo sequencing of peptides poses one of the most challenging tasks in data analysis for proteome research. In this paper, a generative hidden Markov model (HMM) of mass spectra for de novo peptide sequencing which constitutes a novel view on how to solve this problem in a Bayesian framework is proposed. Further extensions of the model structure to a graphical model and a factorial HMM to substantially improve the peptide identification results are demonstrated. Inference with the graphical model for de novo peptide sequencing estimates posterior probabilities for amino acids rather than scores for single symbols in the sequence. Our model outperforms state-of-the-art methods for de novo peptide sequencing on a large test set of spectra.

Citations

82 citations in Web of Science®
90 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 18 Dec 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
08 University Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2005
Deposited On:18 Dec 2009 05:35
Last Modified:05 Apr 2016 13:35
Publisher:American Chemical Society
ISSN:0003-2700
Publisher DOI:10.1021/ac0508853
PubMed ID:16285674
Permanent URL: http://doi.org/10.5167/uzh-24597

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations