UZH-Logo

Maintenance Infos

Towards the proteome of Burkholderia cenocepacia H111: setting up a 2-DE reference map


Riedel, K; Carranza, P; Gehrig, P; Potthast, F; Eberl, L (2006). Towards the proteome of Burkholderia cenocepacia H111: setting up a 2-DE reference map. Proteomics, 6(1):207-216.

Abstract

Polyphasic-taxonomic studies of the past decade have shown that the Burkholderia cepacia complex (Bcc) comprises at least nine species, which share a high degree of 16S rDNA (98-100%) sequence similarity but only moderate levels of DNA-DNA hybridization. Members of the Bcc are well known as opportunistic pathogens of plants, animals and humans but also as biocontrol and bioremediation agents. In this study intra-, surface-associated and extracellular proteins of B. cenocepacia H111, which was isolated from a cystic fibrosis patient, were examined by 2-DE coupled to MALDI-TOF MS. MS and MS/MS data were searched against a database comprising all currently available annotated proteins of genetically closely related strains. In total 642 proteins spots were successfully identified corresponding to 390 different protein species, which were classified into functional categories. The majority of these proteins could be linked to housekeeping functions in energy production, amino acid metabolism, protein folding, post-translational modification and turnover, and translation. Noteworthy is the fact that a significant number of truly secreted and membrane proteins were identified in the extracellular and surface-associated sub-proteomes. This indicates that the pre-fractionation protocol used in this study is a highly valuable strategy for unravelling the cellular location of the identified proteins.

Polyphasic-taxonomic studies of the past decade have shown that the Burkholderia cepacia complex (Bcc) comprises at least nine species, which share a high degree of 16S rDNA (98-100%) sequence similarity but only moderate levels of DNA-DNA hybridization. Members of the Bcc are well known as opportunistic pathogens of plants, animals and humans but also as biocontrol and bioremediation agents. In this study intra-, surface-associated and extracellular proteins of B. cenocepacia H111, which was isolated from a cystic fibrosis patient, were examined by 2-DE coupled to MALDI-TOF MS. MS and MS/MS data were searched against a database comprising all currently available annotated proteins of genetically closely related strains. In total 642 proteins spots were successfully identified corresponding to 390 different protein species, which were classified into functional categories. The majority of these proteins could be linked to housekeeping functions in energy production, amino acid metabolism, protein folding, post-translational modification and turnover, and translation. Noteworthy is the fact that a significant number of truly secreted and membrane proteins were identified in the extracellular and surface-associated sub-proteomes. This indicates that the pre-fractionation protocol used in this study is a highly valuable strategy for unravelling the cellular location of the identified proteins.

Citations

31 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 17 Dec 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
08 University Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2006
Deposited On:17 Dec 2009 17:11
Last Modified:05 Apr 2016 13:35
Publisher:Wiley-Blackwell
ISSN:1615-9853
Publisher DOI:https://doi.org/10.1002/pmic.200500097
PubMed ID:16294309
Permanent URL: https://doi.org/10.5167/uzh-24598

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations