UZH-Logo

Hindbrain administration of estradiol inhibits feeding and activates estrogen receptor-alpha-expressing cells in the nucleus tractus solitarius of ovariectomized rats.


Thammacharoen, S; Lutz, T A; Geary, N; Asarian, L (2008). Hindbrain administration of estradiol inhibits feeding and activates estrogen receptor-alpha-expressing cells in the nucleus tractus solitarius of ovariectomized rats. Endocrinology, 149(4):1609-1617.

Abstract

17beta-estradiol (E2), acting via estrogen receptor (ER)-alpha, inhibits feeding in animals. One mechanism apparently involves an increase in the satiating potency of cholecystokinin (CCK) released from the small intestine by ingested food. For example, the satiating potency of intraduodenal lipid infusions is increased by E2 in ovariectomized rats; this increased satiation is dependent on CCK, and it is accompanied by increases in the numbers of ERalpha-positive cells that express c-Fos in a subregion of the caudal nucleus tractus solitarius (cNTS) that receives abdominal vagal afferent projections. To test whether direct administration of E2 to this area of the hindbrain is sufficient to inhibit food intake, we first implanted 0.2 microg estradiol benzoate (EB) in cholesterol or cholesterol alone either sc or onto the surface of the hindbrain over the cNTS. Food intake was significantly reduced after hindbrain EB implants but not after sc EB implants. Next we verified that equimolar hindbrain implants of E2 and EB had similar feeding-inhibitory effects and determined that only small amounts of E2 reached brain areas outside the dorsal caudal hindbrain after hindbrain implants of (3)H-labeled E2. Neither plasma estradiol concentration nor plasma inflammatory cytokine concentration was increased by either hindbrain or sc EB implants. Finally, hindbrain EB implants, but not sc implants, increased c-Fos in ERalpha-positive cells in the cNTS after ip injection of 4 microg/kg CCK-8. We conclude that E2, acting via ERalpha in cNTS neurons, including neurons stimulated by ip CCK, is sufficient to inhibit feeding.

17beta-estradiol (E2), acting via estrogen receptor (ER)-alpha, inhibits feeding in animals. One mechanism apparently involves an increase in the satiating potency of cholecystokinin (CCK) released from the small intestine by ingested food. For example, the satiating potency of intraduodenal lipid infusions is increased by E2 in ovariectomized rats; this increased satiation is dependent on CCK, and it is accompanied by increases in the numbers of ERalpha-positive cells that express c-Fos in a subregion of the caudal nucleus tractus solitarius (cNTS) that receives abdominal vagal afferent projections. To test whether direct administration of E2 to this area of the hindbrain is sufficient to inhibit food intake, we first implanted 0.2 microg estradiol benzoate (EB) in cholesterol or cholesterol alone either sc or onto the surface of the hindbrain over the cNTS. Food intake was significantly reduced after hindbrain EB implants but not after sc EB implants. Next we verified that equimolar hindbrain implants of E2 and EB had similar feeding-inhibitory effects and determined that only small amounts of E2 reached brain areas outside the dorsal caudal hindbrain after hindbrain implants of (3)H-labeled E2. Neither plasma estradiol concentration nor plasma inflammatory cytokine concentration was increased by either hindbrain or sc EB implants. Finally, hindbrain EB implants, but not sc implants, increased c-Fos in ERalpha-positive cells in the cNTS after ip injection of 4 microg/kg CCK-8. We conclude that E2, acting via ERalpha in cNTS neurons, including neurons stimulated by ip CCK, is sufficient to inhibit feeding.

Citations

56 citations in Web of Science®
62 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

42 downloads since deposited on 16 May 2008
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Physiology
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:2008
Deposited On:16 May 2008 15:49
Last Modified:05 Apr 2016 12:23
Publisher:Endocrine Society
ISSN:0013-7227
Publisher DOI:10.1210/en.2007-0340
PubMed ID:18096668
Permanent URL: http://doi.org/10.5167/uzh-2500

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 20MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations