Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Jecklin, M C; Schauer, S; Dumelin, C E; Zenobi, R (2009). Label-free determination of protein-ligand binding constants using mass spectrometry and validation using surface plasmon resonance and isothermal titration calorimetry. Journal of Molecular Recognition, 22(4):319-329.

Full text not available from this repository.

View at publisher


We performed a systematic comparison of three label-free methods for quantitative assessment of binding strengths of proteins interacting with small molecule ligands. The performance of (1) nanoelectrospray ionization mass spectrometry (nESI-MS), (2) surface plasmon resonance (SPR), and (3) isothermal titration calorimetry (ITC) was compared for the determination of dissociation constants (K(D)). The model system studied for this purpose was the human carbonic anhydrase I (hCAI) with eight known and well characterized sulfonamide inhibitors (Krishnamurthy et al., Chem. Rev. 2008, 108: 946-1051). The binding affinities of the inhibitors chosen vary by more than four orders of magnitude e.g., the K(D) value determined for ethoxzolamide by nESI-MS was 5 +/- 1 nM and the K(D) value for sulfanilamide was 145.7 +/- 10.0 microM. The agreement of the determined K(D) values by the three methods investigated was excellent for ethoxzolamide and benzenesulfonamide (variation with experimental error), good for acetazolamide and 4-carboxybenzenesulfonamide (variation by approximately one order of magnitude), but poor for others e.g., sulpiride. The accuracies of the K(D) values are determined, and advantages and drawbacks of the individual methods are discussed. Moreover, we critically evaluate the three examined methods in terms of ease of the measurement, sample consumption, time requirement, and discuss their limitations.


54 citations in Web of Science®
62 citations in Scopus®
Google Scholar™


Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
08 University Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Deposited On:02 Dec 2009 15:50
Last Modified:05 Apr 2016 13:36
Publisher DOI:10.1002/jmr.951
PubMed ID:19373858

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page