UZH-Logo

Maintenance Infos

Poly(ADP-ribose) polymerase 1 promotes tumor cell survival by coactivating hypoxia-inducible factor-1-dependent gene expression


Elser, M; Borsig, L; Hassa, P O; Erener, S; Messner, S; Valovka, T; Keller, S; Gassmann, M; Hottiger, M O (2008). Poly(ADP-ribose) polymerase 1 promotes tumor cell survival by coactivating hypoxia-inducible factor-1-dependent gene expression. Molecular Cancer Research, 6(2):282-290.

Abstract

Hypoxia-inducible factor 1 (HIF-1) is the key transcription factor regulating hypoxia-dependent gene expression. Lack of oxygen stabilizes HIF-1, which in turn modulates the gene expression pattern to adapt cells to the hypoxic environment. Activation of HIF-1 is also detected in most solid tumors and supports tumor growth through the expression of target genes that are involved in processes like cell proliferation, energy metabolism, and oxygen delivery. Poly(ADP-ribose) polymerase 1 (PARP1) is a chromatin-associated protein, which was shown to regulate transcription. Here we report that chronic myelogenous leukemia cells expressing small interfering RNA against PARP1, which were injected into wild-type mice expressing PARP1, showed tumor growth with increased levels of necrosis, limited vascularization, and reduced expression of GLUT-1. Of note, PARP1-deficient cells showed a reduced HIF-1 transcriptional activation that was dependent on PARP1 enzymatic activity. PARP1 neither influenced binding of HIF-1 to its hypoxic response element nor changed HIF-1alpha protein levels in hypoxic cells. However, PARP1 formed a complex with HIF-1alpha through direct protein interaction and coactivated HIF-1alpha-dependent gene expression. These findings provide convincing evidence that wild-type mice expressing PARP1 cannot compensate for the loss of PARP1 in tumor cells and strengthen the importance of the role of PARP1 as a transcriptional coactivator of HIF-1-dependent gene expression during tumor progression.

Hypoxia-inducible factor 1 (HIF-1) is the key transcription factor regulating hypoxia-dependent gene expression. Lack of oxygen stabilizes HIF-1, which in turn modulates the gene expression pattern to adapt cells to the hypoxic environment. Activation of HIF-1 is also detected in most solid tumors and supports tumor growth through the expression of target genes that are involved in processes like cell proliferation, energy metabolism, and oxygen delivery. Poly(ADP-ribose) polymerase 1 (PARP1) is a chromatin-associated protein, which was shown to regulate transcription. Here we report that chronic myelogenous leukemia cells expressing small interfering RNA against PARP1, which were injected into wild-type mice expressing PARP1, showed tumor growth with increased levels of necrosis, limited vascularization, and reduced expression of GLUT-1. Of note, PARP1-deficient cells showed a reduced HIF-1 transcriptional activation that was dependent on PARP1 enzymatic activity. PARP1 neither influenced binding of HIF-1 to its hypoxic response element nor changed HIF-1alpha protein levels in hypoxic cells. However, PARP1 formed a complex with HIF-1alpha through direct protein interaction and coactivated HIF-1alpha-dependent gene expression. These findings provide convincing evidence that wild-type mice expressing PARP1 cannot compensate for the loss of PARP1 in tumor cells and strengthen the importance of the role of PARP1 as a transcriptional coactivator of HIF-1-dependent gene expression during tumor progression.

Citations

29 citations in Web of Science®
31 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

214 downloads since deposited on 06 Jun 2008
38 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Physiology
05 Vetsuisse Faculty > Institute of Veterinary Biochemistry and Molecular Biology
04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:February 2008
Deposited On:06 Jun 2008 08:47
Last Modified:05 Apr 2016 12:23
Publisher:American Association for Cancer Research
ISSN:1541-7786
Publisher DOI:10.1158/1541-7786.MCR-07-0377
PubMed ID:18314489
Permanent URL: http://doi.org/10.5167/uzh-2526

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations