UZH-Logo

Maintenance Infos

Abortion in mice with excessive erythrocytosis is due to impaired arteriogenesis of the uterine arcade


Gassmann, M; Manini, A; Stallmach, T; Saam, B; Kuhn, Gi; Grenacher, B; Bogdanova, A Y; Vogel, J (2008). Abortion in mice with excessive erythrocytosis is due to impaired arteriogenesis of the uterine arcade. Biology of Reproduction, 78(6):1049-57.

Abstract

We postulate that repeated pregnancy loss, intrauterine growth restriction, and preeclampsia are caused by impaired elevation of uterine blood flow due to disturbed arteriogenesis of the uterine arcade. This hypothesis is based on the observation that pregnant human erythropoietin-overexpressing (plasma levels elevated 12-fold) mice (termed tg6 mice) suffering from excessive erythrocytosis generally abort at midgestation unless their hematocrit of 0.85 is drastically lowered. Transgenic mice show placental malformations that parallel those observed in pregnant women suffering from impaired uterine perfusion. Shear stress, a key factor inducing arteriogenesis, was 5-fold lower in tg6 mice compared with wildtype (WT) littermates. Consequently, uterine artery growth was reduced, and dramatically fewer viable pups (1.63 +/- 2.20 vs. 8.10 +/- 0.74 in WT) of lower weight (1.29 +/- 0.07 g vs. 1.62 +/- 0.12 g in WT) were delivered in first pregnancies. Only in subsequent pregnancies did tg6 deliver approximately the expected number of pups. Birth weights of tg6 offspring, however, remained reduced. As the spleen is a major site of extramedullary erythropoiesis in tg6 animals, splenectomy reduced the hematocrit to 0.6-0.7. In turn, shear stress increased to normal values, and splenectomized primiparous tg6 showed normal uterine artery growth and delivery of pups similar in number and weight compared with WT. We conclude that poor arteriogenesis is a previously unappreciated cause for clinically important pregnancy complications.

We postulate that repeated pregnancy loss, intrauterine growth restriction, and preeclampsia are caused by impaired elevation of uterine blood flow due to disturbed arteriogenesis of the uterine arcade. This hypothesis is based on the observation that pregnant human erythropoietin-overexpressing (plasma levels elevated 12-fold) mice (termed tg6 mice) suffering from excessive erythrocytosis generally abort at midgestation unless their hematocrit of 0.85 is drastically lowered. Transgenic mice show placental malformations that parallel those observed in pregnant women suffering from impaired uterine perfusion. Shear stress, a key factor inducing arteriogenesis, was 5-fold lower in tg6 mice compared with wildtype (WT) littermates. Consequently, uterine artery growth was reduced, and dramatically fewer viable pups (1.63 +/- 2.20 vs. 8.10 +/- 0.74 in WT) of lower weight (1.29 +/- 0.07 g vs. 1.62 +/- 0.12 g in WT) were delivered in first pregnancies. Only in subsequent pregnancies did tg6 deliver approximately the expected number of pups. Birth weights of tg6 offspring, however, remained reduced. As the spleen is a major site of extramedullary erythropoiesis in tg6 animals, splenectomy reduced the hematocrit to 0.6-0.7. In turn, shear stress increased to normal values, and splenectomized primiparous tg6 showed normal uterine artery growth and delivery of pups similar in number and weight compared with WT. We conclude that poor arteriogenesis is a previously unappreciated cause for clinically important pregnancy complications.

Citations

9 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

125 downloads since deposited on 06 Jun 2008
35 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Physiology
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2008
Deposited On:06 Jun 2008 11:44
Last Modified:05 Apr 2016 12:23
Publisher:Society for the Study of Reproduction
ISSN:0006-3363
Publisher DOI:https://doi.org/10.1095/biolreprod.107.065532
PubMed ID:18256329
Permanent URL: https://doi.org/10.5167/uzh-2530

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations