UZH-Logo

Maintenance Infos

Ecosystem carbon dynamics in logged forest of Malaysian Borneo


Saner, P G. Ecosystem carbon dynamics in logged forest of Malaysian Borneo. 2009, University of Zurich, Faculty of Science.

Abstract

The tropical rainforest of Borneo is heavily disturbed by logging, to date less than half of the original forest cover remains. To counteract such development logged forest is rehabilitated to regenerate its natural protective function. In this thesis we consider the carbon budget of logged forest and the ecology of the trees that are planted for rehabilitation. We show that the logged forest under study differs from unlogged forest due to the lack of the dominant trees and hence the organic carbon that is stored in their biomass. Besides this difference our results indicate that logged forest can maintain its protective function for carbon storage and is therefore worth preserving. The dominant trees, known as dipterocarps, belong to the Dipterocarpaceae family and are keystone species of the lowland forests of Borneo. On the basis of experimental work we study the carbon dynamics of selected dipterocarp species at the seedling stage. With plant physiological measurements of the carbohydrate stores we demonstrate how seedlings adapt to a changing light environment. Our results show that photosynthates are invested into growth or carbohydrate reserves, irrespective of the tree species under study. Further, experimental evidence suggests that the ectomycorrhizal association (plant-fungi-symbiosis) is crucial for the growth of seedlings and should therefore be considered for forest rehabilitation measures. In contrast we could not find evidence for a complex ectomycorrhiza-network between dipterocarp trees and seedlings in logged forest.

Abstract

The tropical rainforest of Borneo is heavily disturbed by logging, to date less than half of the original forest cover remains. To counteract such development logged forest is rehabilitated to regenerate its natural protective function. In this thesis we consider the carbon budget of logged forest and the ecology of the trees that are planted for rehabilitation. We show that the logged forest under study differs from unlogged forest due to the lack of the dominant trees and hence the organic carbon that is stored in their biomass. Besides this difference our results indicate that logged forest can maintain its protective function for carbon storage and is therefore worth preserving. The dominant trees, known as dipterocarps, belong to the Dipterocarpaceae family and are keystone species of the lowland forests of Borneo. On the basis of experimental work we study the carbon dynamics of selected dipterocarp species at the seedling stage. With plant physiological measurements of the carbohydrate stores we demonstrate how seedlings adapt to a changing light environment. Our results show that photosynthates are invested into growth or carbohydrate reserves, irrespective of the tree species under study. Further, experimental evidence suggests that the ectomycorrhizal association (plant-fungi-symbiosis) is crucial for the growth of seedlings and should therefore be considered for forest rehabilitation measures. In contrast we could not find evidence for a complex ectomycorrhiza-network between dipterocarp trees and seedlings in logged forest.

Downloads

922 downloads since deposited on 08 Dec 2009
181 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Dissertation
Referees:Hector A, Schmid B, Scherer-Lorenzen M, Egli S
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2009
Deposited On:08 Dec 2009 07:49
Last Modified:05 Apr 2016 13:37
Number of Pages:209

Download

[img]
Preview
Filetype: PDF
Size: 5MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations