UZH-Logo

Maintenance Infos

Autologous human tissue-engineered heart valves: prospects for systemic application


Mol, A; Rutten, M C M; Driessen, N J B; Bouten, C V C; Zünd, G; Baaijens, F P T; Hoerstrup, S P (2006). Autologous human tissue-engineered heart valves: prospects for systemic application. Circulation, 114(1 Supp):I-152-I-158.

Abstract

BACKGROUND: Tissue engineering represents a promising approach for the development of living heart valve replacements. In vivo animal studies of tissue-engineered autologous heart valves have focused on pulmonary valve replacements, leaving the challenge to tissue engineer heart valves suitable for systemic application using human cells. METHODS AND RESULTS: Tissue-engineered human heart valves were analyzed up to 4 weeks and conditioning using bioreactors was compared with static culturing. Tissue formation and mechanical properties increased with time and when using conditioning. Organization of the tissue, in terms of anisotropic properties, increased when conditioning was dynamic in nature. Exposure of the valves to physiological aortic valve flow demonstrated proper opening motion. Closure dynamics were suboptimal, most likely caused by the lower degree of anisotropy when compared with native aortic valve leaflets. CONCLUSIONS: This study presents autologous tissue-engineered heart valves based on human saphenous vein cells and a rapid degrading synthetic scaffold. Tissue properties and mechanical behavior might allow for use as living aortic valve replacements.

BACKGROUND: Tissue engineering represents a promising approach for the development of living heart valve replacements. In vivo animal studies of tissue-engineered autologous heart valves have focused on pulmonary valve replacements, leaving the challenge to tissue engineer heart valves suitable for systemic application using human cells. METHODS AND RESULTS: Tissue-engineered human heart valves were analyzed up to 4 weeks and conditioning using bioreactors was compared with static culturing. Tissue formation and mechanical properties increased with time and when using conditioning. Organization of the tissue, in terms of anisotropic properties, increased when conditioning was dynamic in nature. Exposure of the valves to physiological aortic valve flow demonstrated proper opening motion. Closure dynamics were suboptimal, most likely caused by the lower degree of anisotropy when compared with native aortic valve leaflets. CONCLUSIONS: This study presents autologous tissue-engineered heart valves based on human saphenous vein cells and a rapid degrading synthetic scaffold. Tissue properties and mechanical behavior might allow for use as living aortic valve replacements.

Citations

31 citations in Web of Science®
95 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 08 Dec 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2006
Deposited On:08 Dec 2009 12:44
Last Modified:05 Apr 2016 13:37
Publisher:Lippincott Wiliams & Wilkins
ISSN:0009-7322
Publisher DOI:https://doi.org/10.1161/CIRCULATIONAHA.105.001123
PubMed ID:16820565
Permanent URL: https://doi.org/10.5167/uzh-25440

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations