UZH-Logo

Maintenance Infos

Living autologous heart valves engineered from human prenatally harvested progenitors


Schmidt, D; Mol, A; Breymann, C; Achermann, J; Odermatt, B; Gössi, M; Neuenschwander, S; Prêtre, René; Genoni, M; Zund, G; Hoerstrup, S P (2006). Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation Research, 114(1 Suppl):I125-I131.

Abstract

BACKGROUND: Heart valve tissue engineering is a promising strategy to overcome the lack of autologous growing replacements, particularly for the repair of congenital malformations. Here, we present a novel concept using human prenatal progenitor cells as new and exclusive cell source to generate autologous implants ready for use at birth. METHODS AND RESULTS: Human fetal mesenchymal progenitors were isolated from routinely sampled prenatal chorionic villus specimens and expanded in vitro. A portion was cryopreserved. After phenotyping and genotyping, cells were seeded onto synthetic biodegradable leaflet scaffolds (n=12) and conditioned in a bioreactor. After 21 days, leaflets were endothelialized with umbilical cord blood-derived endothelial progenitor cells and conditioned for additional 7 days. Resulting tissues were analyzed by histology, immunohistochemistry, biochemistry (amounts of extracellular matrix, DNA), mechanical testing, and scanning electron microscopy (SEM) and were compared with native neonatal heart valve leaflets. Fresh and cryopreserved cells showed comparable myofibroblast-like phenotypes. Genotyping confirmed their fetal origin. Neo-tissues exhibited organization, cell phenotypes, extracellular matrix production, and DNA content comparable to their native counterparts. Leaflet surfaces were covered with functional endothelia. SEM showed cellular distribution throughout the polymer and smooth surfaces. Mechanical profiles approximated those of native heart valves. CONCLUSIONS: Prenatal fetal progenitors obtained from routine chorionic villus sampling were successfully used as an exclusive, new cell source for the engineering of living heart valve leaflets. This concept may enable autologous replacements with growth potential ready for use at birth. Combined with the use of cell banking technology, this approach may be applied also for postnatal applications.

BACKGROUND: Heart valve tissue engineering is a promising strategy to overcome the lack of autologous growing replacements, particularly for the repair of congenital malformations. Here, we present a novel concept using human prenatal progenitor cells as new and exclusive cell source to generate autologous implants ready for use at birth. METHODS AND RESULTS: Human fetal mesenchymal progenitors were isolated from routinely sampled prenatal chorionic villus specimens and expanded in vitro. A portion was cryopreserved. After phenotyping and genotyping, cells were seeded onto synthetic biodegradable leaflet scaffolds (n=12) and conditioned in a bioreactor. After 21 days, leaflets were endothelialized with umbilical cord blood-derived endothelial progenitor cells and conditioned for additional 7 days. Resulting tissues were analyzed by histology, immunohistochemistry, biochemistry (amounts of extracellular matrix, DNA), mechanical testing, and scanning electron microscopy (SEM) and were compared with native neonatal heart valve leaflets. Fresh and cryopreserved cells showed comparable myofibroblast-like phenotypes. Genotyping confirmed their fetal origin. Neo-tissues exhibited organization, cell phenotypes, extracellular matrix production, and DNA content comparable to their native counterparts. Leaflet surfaces were covered with functional endothelia. SEM showed cellular distribution throughout the polymer and smooth surfaces. Mechanical profiles approximated those of native heart valves. CONCLUSIONS: Prenatal fetal progenitors obtained from routine chorionic villus sampling were successfully used as an exclusive, new cell source for the engineering of living heart valve leaflets. This concept may enable autologous replacements with growth potential ready for use at birth. Combined with the use of cell banking technology, this approach may be applied also for postnatal applications.

Citations

17 citations in Web of Science®
76 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
08 University Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2006
Deposited On:09 Dec 2009 08:22
Last Modified:05 Apr 2016 13:37
Publisher:Lippincott Wiliams & Wilkins
ISSN:0009-7330
Publisher DOI:https://doi.org/10.1161/CIRCULATIONAHA.105.001040
PubMed ID:16820561

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations