UZH-Logo

Should human chondrocytes fly? The impact of electromagnetic irradiation on chondrocyte viability and implications for their use in tissue engineering


Koehler, C; Niederbichler, A D; Scholz, T; Bode, B; Roos, J; Jung, F J; Hoerstrup, S P; Hellermann, J P; Wedler, V (2006). Should human chondrocytes fly? The impact of electromagnetic irradiation on chondrocyte viability and implications for their use in tissue engineering. Bioprocess and Biosystems Engineering, 29(5-6):415-420.

Abstract

A significant logistic factor as to the successful clinical application of the autologous tissue engineering concept is efficient transportation: the donor cells need to be delivered to tissue processing facilities which in most cases requires air transportation. This study was designed to evaluate how human chondrocytes react to X-ray exposure. Primary cell cultures were established, cultured, incubated and exposed to different doses and time periods of radiation. Subsequently, quantitative cell proliferation assays were done and qualitative evaluation of cellular protein production were performed. Our results show that after irradiation of chondrocytes with different doses, no significant differences in terms of cellular viability occurred compared with the control group. These results were obtained when chondrocytes were exposed to luggage transillumination doses as well as exposure to clinically used radiation doses. Any damage affecting cell growth or quality was not observed in our study. However, information about damage of cellular DNA remains incomplete.

A significant logistic factor as to the successful clinical application of the autologous tissue engineering concept is efficient transportation: the donor cells need to be delivered to tissue processing facilities which in most cases requires air transportation. This study was designed to evaluate how human chondrocytes react to X-ray exposure. Primary cell cultures were established, cultured, incubated and exposed to different doses and time periods of radiation. Subsequently, quantitative cell proliferation assays were done and qualitative evaluation of cellular protein production were performed. Our results show that after irradiation of chondrocytes with different doses, no significant differences in terms of cellular viability occurred compared with the control group. These results were obtained when chondrocytes were exposed to luggage transillumination doses as well as exposure to clinically used radiation doses. Any damage affecting cell growth or quality was not observed in our study. However, information about damage of cellular DNA remains incomplete.

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2006
Deposited On:09 Dec 2009 07:58
Last Modified:05 Apr 2016 13:37
Publisher:Springer
ISSN:1615-7591
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:10.1007/s00449-006-0094-8
PubMed ID:17051394

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations