UZH-Logo

Revealing the physics of movement: comparing the similarity of movement characteristics of different types of moving objects


Dodge, S; Weibel, Robert; Forootan, E (2009). Revealing the physics of movement: comparing the similarity of movement characteristics of different types of moving objects. Computers, Environment and Urban Systems, 33(6):419 -434 .

Abstract

We propose a segmentation and feature extraction method for trajectories of moving objects. The methodology consists of three stages: trajectory data preparation; global descriptors computation; and local feature extraction. The key element is an algorithm that decomposes the profiles generated for different movement parameters (velocity, acceleration, etc.) using variations in sinuosity and deviation from the median line. Hence, the methodology enables the extraction of local movement features in addition to global ones that are essential for modeling and analyzing moving objects in applications such as trajectory classification, simulation and extraction of movement patterns. As a case study, we show how the method can be employed in classifying trajectory data generated by unknown moving objects and assigning them to known types of moving objects, whose movement characteristics have been previously learned. We have conducted a series of experiments that provide evidence about the similarities and differences that exist among different types of moving objects. The experiments show that the methodology can be successfully applied in automatic transport mode detection. It is also shown that eye-movement data cannot be successfully used as a proxy of full-body movement of humans, or vehicles.

We propose a segmentation and feature extraction method for trajectories of moving objects. The methodology consists of three stages: trajectory data preparation; global descriptors computation; and local feature extraction. The key element is an algorithm that decomposes the profiles generated for different movement parameters (velocity, acceleration, etc.) using variations in sinuosity and deviation from the median line. Hence, the methodology enables the extraction of local movement features in addition to global ones that are essential for modeling and analyzing moving objects in applications such as trajectory classification, simulation and extraction of movement patterns. As a case study, we show how the method can be employed in classifying trajectory data generated by unknown moving objects and assigning them to known types of moving objects, whose movement characteristics have been previously learned. We have conducted a series of experiments that provide evidence about the similarities and differences that exist among different types of moving objects. The experiments show that the methodology can be successfully applied in automatic transport mode detection. It is also shown that eye-movement data cannot be successfully used as a proxy of full-body movement of humans, or vehicles.

Citations

35 citations in Web of Science®
60 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

371 downloads since deposited on 05 Jan 2010
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:November 2009
Deposited On:05 Jan 2010 09:41
Last Modified:05 Apr 2016 13:37
Publisher:Elsevier
ISSN:0198-9715
Publisher DOI:10.1016/j.compenvurbsys.2009.07.008
Permanent URL: http://doi.org/10.5167/uzh-25585

Download

[img]
Filetype: PDF - Registered users only
Size: 2MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 4MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations