UZH-Logo

Computational disease modeling - fact or fiction?


Tegnér, J N; Compte, A; Auffray, C; An, G; Cedersund, G; Clermont, G; Gutkin, B; Oltvai, Z; Stephan, K E; Thomas, R; Villoslada, P (2009). Computational disease modeling - fact or fiction? BMC Systems Biology, 3:56.

Abstract

BACKGROUND: Biomedical research is changing due to the rapid accumulation of experimental data at an unprecedented scale, revealing increasing degrees of complexity of biological processes. Life Sciences are facing a transition from a descriptive to a mechanistic approach that reveals principles of cells, cellular networks, organs, and their interactions across several spatial and temporal scales. There are two conceptual traditions in biological computational-modeling. The bottom-up approach emphasizes complex intracellular molecular models and is well represented within the systems biology community. On the other hand, the physics-inspired top-down modeling strategy identifies and selects features of (presumably) essential relevance to the phenomena of interest and combines available data in models of modest complexity. RESULTS: The workshop, "ESF Exploratory Workshop on Computational disease Modeling", examined the challenges that computational modeling faces in contributing to the understanding and treatment of complex multi-factorial diseases. Participants at the meeting agreed on two general conclusions. First, we identified the critical importance of developing analytical tools for dealing with model and parameter uncertainty. Second, the development of predictive hierarchical models spanning several scales beyond intracellular molecular networks was identified as a major objective. This contrasts with the current focus within the systems biology community on complex molecular modeling. CONCLUSION: During the workshop it became obvious that diverse scientific modeling cultures (from computational neuroscience, theory, data-driven machine-learning approaches, agent-based modeling, network modeling and stochastic-molecular simulations) would benefit from intense cross-talk on shared theoretical issues in order to make progress on clinically relevant problems.

BACKGROUND: Biomedical research is changing due to the rapid accumulation of experimental data at an unprecedented scale, revealing increasing degrees of complexity of biological processes. Life Sciences are facing a transition from a descriptive to a mechanistic approach that reveals principles of cells, cellular networks, organs, and their interactions across several spatial and temporal scales. There are two conceptual traditions in biological computational-modeling. The bottom-up approach emphasizes complex intracellular molecular models and is well represented within the systems biology community. On the other hand, the physics-inspired top-down modeling strategy identifies and selects features of (presumably) essential relevance to the phenomena of interest and combines available data in models of modest complexity. RESULTS: The workshop, "ESF Exploratory Workshop on Computational disease Modeling", examined the challenges that computational modeling faces in contributing to the understanding and treatment of complex multi-factorial diseases. Participants at the meeting agreed on two general conclusions. First, we identified the critical importance of developing analytical tools for dealing with model and parameter uncertainty. Second, the development of predictive hierarchical models spanning several scales beyond intracellular molecular networks was identified as a major objective. This contrasts with the current focus within the systems biology community on complex molecular modeling. CONCLUSION: During the workshop it became obvious that diverse scientific modeling cultures (from computational neuroscience, theory, data-driven machine-learning approaches, agent-based modeling, network modeling and stochastic-molecular simulations) would benefit from intense cross-talk on shared theoretical issues in order to make progress on clinically relevant problems.

Citations

13 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

63 downloads since deposited on 01 Feb 2010
14 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:03 Faculty of Economics > Department of Economics
Dewey Decimal Classification:330 Economics
Language:English
Date:2009
Deposited On:01 Feb 2010 23:06
Last Modified:05 Apr 2016 13:38
Publisher:BioMed Central
ISSN:1752-0509
Publisher DOI:10.1186/1752-0509-3-56
PubMed ID:19497118
Permanent URL: http://doi.org/10.5167/uzh-25647

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations