UZH-Logo

Maintenance Infos

Population dynamics under the Laplace assumption


Marreiros, A C; Kiebel, S J; Daunizeau, J; Harrison, L M; Friston, K J (2009). Population dynamics under the Laplace assumption. NeuroImage, 44(3):701-714.

Abstract

In this paper, we describe a generic approach to modelling dynamics in neuronal populations. This approach models a full density on the states of neuronal populations but finesses this high-dimensional problem by re-formulating density dynamics in terms of ordinary differential equations on the sufficient statistics of the densities considered (c.f., the method of moments). The particular form for the population density we adopt is a Gaussian density (c.f., the Laplace assumption). This means population dynamics are described by equations governing the evolution of the population's mean and covariance. We derive these equations from the Fokker-Planck formalism and illustrate their application to a conductance-based model of neuronal exchanges. One interesting aspect of this formulation is that we can uncouple the mean and covariance to furnish a neural-mass model, which rests only on the populations mean. This enables us to compare equivalent mean-field and neural-mass models of the same populations and evaluate, quantitatively, the contribution of population variance to the expected dynamics. The mean-field model presented here will form the basis of a dynamic causal model of observed electromagnetic signals in future work.

In this paper, we describe a generic approach to modelling dynamics in neuronal populations. This approach models a full density on the states of neuronal populations but finesses this high-dimensional problem by re-formulating density dynamics in terms of ordinary differential equations on the sufficient statistics of the densities considered (c.f., the method of moments). The particular form for the population density we adopt is a Gaussian density (c.f., the Laplace assumption). This means population dynamics are described by equations governing the evolution of the population's mean and covariance. We derive these equations from the Fokker-Planck formalism and illustrate their application to a conductance-based model of neuronal exchanges. One interesting aspect of this formulation is that we can uncouple the mean and covariance to furnish a neural-mass model, which rests only on the populations mean. This enables us to compare equivalent mean-field and neural-mass models of the same populations and evaluate, quantitatively, the contribution of population variance to the expected dynamics. The mean-field model presented here will form the basis of a dynamic causal model of observed electromagnetic signals in future work.

Citations

34 citations in Web of Science®
35 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 20 Jan 2010
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Economics
Dewey Decimal Classification:330 Economics
Language:English
Date:2009
Deposited On:20 Jan 2010 10:31
Last Modified:05 Apr 2016 13:38
Publisher:Elsevier
ISSN:1053-8119
Publisher DOI:https://doi.org/10.1016/j.neuroimage.2008.10.008
PubMed ID:19013532
Permanent URL: https://doi.org/10.5167/uzh-25679

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations