UZH-Logo

RFT1-CDG: Deafness as a novel feature of congenital disorders of glycosylation


Jaeken, J; Vleugels, W; Régal, L; Corchia, C; Goemans, N; Haeuptle, M A; Foulquier, F; Hennet, T; Matthijs, G; Dionisi-Vici, C (2009). RFT1-CDG: Deafness as a novel feature of congenital disorders of glycosylation. Journal of Inherited Metabolic Disease, 32(S1):335-338.

Abstract

Congenital disorders of glycosylation (CDG) are genetic diseases due to defects in the synthesis of glycans and in the attachment of glycans to lipids and proteins. Actually, some 42 CDG are known including defects in protein N-glycosylation, in protein O-glycosylation, in lipid glycosylation, and in multiple and other glycosylation pathways. Most CDG are multisystem diseases and a large number of signs and symptoms have already been reported in CDG. An exception to this is deafness. This symptom has not been observed as a consistent feature in CDG. In 2008, a novel defect was identified in protein N-glycosylation, namely in RFT1. This is a defect in the assembly of N-glycans. RFT1 is involved in the transfer of Man(5)GlcNAc(2)-PP-Dol from the cytoplasmic to the luminal side of the endoplasmic reticulum. According to the novel nomenclature (non-italicized gene symbol followed by -CDG) this defect is named RFT1-CDG. Recently, three other patients with RFT1-CDG have been reported and here we report two novel patients. Remarkably, all six patients with RFT1-CDG show sensorineural deafness as part of a severe neurological syndrome. We conclude that RFT1-CDG is the first 'deafness-CDG'. CDG should be included in the work-up of congenital, particularly syndromic, hearing loss.

Congenital disorders of glycosylation (CDG) are genetic diseases due to defects in the synthesis of glycans and in the attachment of glycans to lipids and proteins. Actually, some 42 CDG are known including defects in protein N-glycosylation, in protein O-glycosylation, in lipid glycosylation, and in multiple and other glycosylation pathways. Most CDG are multisystem diseases and a large number of signs and symptoms have already been reported in CDG. An exception to this is deafness. This symptom has not been observed as a consistent feature in CDG. In 2008, a novel defect was identified in protein N-glycosylation, namely in RFT1. This is a defect in the assembly of N-glycans. RFT1 is involved in the transfer of Man(5)GlcNAc(2)-PP-Dol from the cytoplasmic to the luminal side of the endoplasmic reticulum. According to the novel nomenclature (non-italicized gene symbol followed by -CDG) this defect is named RFT1-CDG. Recently, three other patients with RFT1-CDG have been reported and here we report two novel patients. Remarkably, all six patients with RFT1-CDG show sensorineural deafness as part of a severe neurological syndrome. We conclude that RFT1-CDG is the first 'deafness-CDG'. CDG should be included in the work-up of congenital, particularly syndromic, hearing loss.

Citations

4 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

36 downloads since deposited on 15 Dec 2009
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2009
Deposited On:15 Dec 2009 14:13
Last Modified:05 Apr 2016 13:38
Publisher:Springer
ISSN:0141-8955
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:10.1007/s10545-009-1297-3
PubMed ID:19856127
Permanent URL: http://doi.org/10.5167/uzh-25747

Download

[img]Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations