UZH-Logo

Private Cross-page Movie Recommendations with the Firefox add-on OMORE


Bannwart, T; Bouza, A; Reif, G; Bernstein, A (2009). Private Cross-page Movie Recommendations with the Firefox add-on OMORE. In: 8th International Semantic Web Conference, Washington DC, USA, 25 October 2009 - 29 October 2009.

Abstract

Online stores and Web portals bring information about a myriad of items such as books, CDs, restaurants or movies at the user's fingertips. Although, the Web reduces the barrier to the information, the user is overwhelmed by the number of available items. Therefore, recommender systems aim to guide the user to relevant items. Current recommender systems store user ratings on the server side. This way the scope of the recommendations is limited to this server only. In addition, the user entrusts the operator of the server with valuable information about his preferences.
Thus, we introduce the private, personal movie recommender OMORE, which learns the user model based on the user's movie ratings. To preserve privacy, OMORE is implemented as Firefox add-on which stores the user ratings and the learned user model locally at the client side. Although OMORE uses the features from the movie pages on the IMDb site, it is not restricted to IMDb only. To enable cross-referencing between various movie sites such as IMDb, Amazon.com, Blockbuster, Netflix, Jinni, or Rotten Tomatoes we introduce the movie cross-reference database LiMo which contributes to the Linked Data cloud.

Online stores and Web portals bring information about a myriad of items such as books, CDs, restaurants or movies at the user's fingertips. Although, the Web reduces the barrier to the information, the user is overwhelmed by the number of available items. Therefore, recommender systems aim to guide the user to relevant items. Current recommender systems store user ratings on the server side. This way the scope of the recommendations is limited to this server only. In addition, the user entrusts the operator of the server with valuable information about his preferences.
Thus, we introduce the private, personal movie recommender OMORE, which learns the user model based on the user's movie ratings. To preserve privacy, OMORE is implemented as Firefox add-on which stores the user ratings and the learned user model locally at the client side. Although OMORE uses the features from the movie pages on the IMDb site, it is not restricted to IMDb only. To enable cross-referencing between various movie sites such as IMDb, Amazon.com, Blockbuster, Netflix, Jinni, or Rotten Tomatoes we introduce the movie cross-reference database LiMo which contributes to the Linked Data cloud.

Downloads

106 downloads since deposited on 01 Feb 2010
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Other), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:29 October 2009
Deposited On:01 Feb 2010 01:25
Last Modified:05 Apr 2016 13:38
Permanent URL: http://doi.org/10.5167/uzh-25788

Download

[img]
Preview
Filetype: PDF
Size: 2MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations