UZH-Logo

Maintenance Infos

Absolute pitch—functional evidence of speech-relevant auditory acuity


Oechslin, M; Meyer, Martin; Jäncke, Lutz (2010). Absolute pitch—functional evidence of speech-relevant auditory acuity. Cerebral Cortex, 20(2):447-455.

Abstract

Absolute pitch (AP) has been shown to be associated with morphological changes and neurophysiological adaptations in the planum temporale, a cortical area involved in higher-order auditory and speech perception processes. The direct link between speech processing and AP has hitherto not been addressed. We provide first evidence that AP compared with relative pitch (RP) ability is associated with significantly different hemodynamic responses to complex speech sounds. By systematically varying the lexical and/or prosodic information of speech stimuli, we demonstrated consistent activation differences in AP musicians compared with RP musicians and nonmusicians. These differences relate to stronger activations in the posterior part of the middle temporal gyrus and weaker activations in the anterior mid-part of the superior temporal gyrus. Furthermore, this pattern is considerably modulated by the auditory acuity of AP. Our results suggest that the neural underpinnings of pitch processing expertise exercise a strong influence on propositional speech perception (sentence meaning).

Abstract

Absolute pitch (AP) has been shown to be associated with morphological changes and neurophysiological adaptations in the planum temporale, a cortical area involved in higher-order auditory and speech perception processes. The direct link between speech processing and AP has hitherto not been addressed. We provide first evidence that AP compared with relative pitch (RP) ability is associated with significantly different hemodynamic responses to complex speech sounds. By systematically varying the lexical and/or prosodic information of speech stimuli, we demonstrated consistent activation differences in AP musicians compared with RP musicians and nonmusicians. These differences relate to stronger activations in the posterior part of the middle temporal gyrus and weaker activations in the anterior mid-part of the superior temporal gyrus. Furthermore, this pattern is considerably modulated by the auditory acuity of AP. Our results suggest that the neural underpinnings of pitch processing expertise exercise a strong influence on propositional speech perception (sentence meaning).

Citations

41 citations in Web of Science®
44 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

102 downloads since deposited on 27 Jan 2010
31 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:06 Faculty of Arts > Institute of Psychology
Dewey Decimal Classification:150 Psychology
Language:English
Date:2010
Deposited On:27 Jan 2010 11:13
Last Modified:05 Apr 2016 13:38
Publisher:Oxford University Press
ISSN:1047-3211
Publisher DOI:https://doi.org/10.1093/cercor/bhp113
PubMed ID:19592570

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations