UZH-Logo

Early in vivo experience with tissue-engineered trileaflet heart valves


Sodian, R; Hoerstrup, S P; Sperling, J S; Daebritz, S; Martin, D P; Moran, A M; Kim, B S; Schoen, F J; Vacanti, J P; Mayer, J E (2000). Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation, 102(19 Sup):III22-III29.

Abstract

BACKGROUND: Tissue engineering is a new approach in which techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional autologous tissue. Workers at our laboratory have focused on tissue engineering of heart valves. The present study was designed to evaluate the implantation of a whole trileaflet tissue-engineered heart valve in the pulmonary position in a lamb model. METHODS AND RESULTS: We constructed a biodegradable and biocompatible trileaflet heart valve scaffold that was fabricated from a porous polyhydroxyalkanoate (pore size 180 to 240 microm; Tepha Inc). Vascular cells were harvested from ovine carotid arteries, expanded in vitro, and seeded onto our heart valve scaffold. With the use of cardiopulmonary bypass, the native pulmonary leaflets were resected, and 2-cm segments of pulmonary artery were replaced by autologous cell-seeded heart valve constructs (n=4). One animal received an acellular valved conduit. No animal received any anticoagulation therapy. Animals were killed at 1, 5, 13, and 17 weeks. Explanted valves were examined histologically with scanning electron microscopy, biochemically, and biomechanically. All animals survived the procedure. The valves showed minimal regurgitation, and valve gradients were <20 mm Hg on echocardiography. The maximum gradient was 10 mm Hg with direct pressures. Macroscopically, the tissue-engineered constructs were covered with tissue, and there was no thrombus formation on any of the specimens. Scanning electron microscopy showed smooth flow surfaces during the follow-up period. Histological examination demonstrated laminated fibrous tissue with predominant glycosaminoglycans as extracellular matrix. 4-Hydroxyproline assays demonstrated an increase in collagen content as a percentage of native pulmonary artery (1 week 45.8%, 17 weeks 116%). DNA assays showed a comparable number of cells in all explanted samples. There was no tissue formation in the acellular control. CONCLUSIONS: Tissue-engineered heart valve scaffolds fabricated from polyhydroxyalkanoates can be used for implantation in the pulmonary position with an appropriate function for 120 days in lambs.

BACKGROUND: Tissue engineering is a new approach in which techniques are being developed to transplant autologous cells onto biodegradable scaffolds to ultimately form new functional autologous tissue. Workers at our laboratory have focused on tissue engineering of heart valves. The present study was designed to evaluate the implantation of a whole trileaflet tissue-engineered heart valve in the pulmonary position in a lamb model. METHODS AND RESULTS: We constructed a biodegradable and biocompatible trileaflet heart valve scaffold that was fabricated from a porous polyhydroxyalkanoate (pore size 180 to 240 microm; Tepha Inc). Vascular cells were harvested from ovine carotid arteries, expanded in vitro, and seeded onto our heart valve scaffold. With the use of cardiopulmonary bypass, the native pulmonary leaflets were resected, and 2-cm segments of pulmonary artery were replaced by autologous cell-seeded heart valve constructs (n=4). One animal received an acellular valved conduit. No animal received any anticoagulation therapy. Animals were killed at 1, 5, 13, and 17 weeks. Explanted valves were examined histologically with scanning electron microscopy, biochemically, and biomechanically. All animals survived the procedure. The valves showed minimal regurgitation, and valve gradients were <20 mm Hg on echocardiography. The maximum gradient was 10 mm Hg with direct pressures. Macroscopically, the tissue-engineered constructs were covered with tissue, and there was no thrombus formation on any of the specimens. Scanning electron microscopy showed smooth flow surfaces during the follow-up period. Histological examination demonstrated laminated fibrous tissue with predominant glycosaminoglycans as extracellular matrix. 4-Hydroxyproline assays demonstrated an increase in collagen content as a percentage of native pulmonary artery (1 week 45.8%, 17 weeks 116%). DNA assays showed a comparable number of cells in all explanted samples. There was no tissue formation in the acellular control. CONCLUSIONS: Tissue-engineered heart valve scaffolds fabricated from polyhydroxyalkanoates can be used for implantation in the pulmonary position with an appropriate function for 120 days in lambs.

Citations

160 citations in Web of Science®
200 citations in Scopus®
Google Scholar™

Downloads

2 downloads since deposited on 13 Jan 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2000
Deposited On:13 Jan 2010 11:44
Last Modified:05 Apr 2016 13:39
Publisher:Lippincott Wiliams & Wilkins
ISSN:0009-7322
Free access at:Official URL. An embargo period may apply.
Official URL:http://circ.ahajournals.org/cgi/reprint/102/suppl_3/III-22
PubMed ID:11082357
Permanent URL: http://doi.org/10.5167/uzh-25914

Download

[img]Filetype: PDF - Registered users only
Size: 2MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations