UZH-Logo

Tissue engineering of functional trileaflet heart valves from human marrow stromal cells


Hoerstrup, S P; Kadner, A; Melnitchouk, S; Trojan, A; Eid, K; Tracy, J; Sodian, R; Visjager, J F; Kolb, S A; Grünenfelder, J; Zund, G; Turina, M I (2002). Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation, 106(12 Sup):I143-I150.

Abstract

BACKGROUND: We previously demonstrated the successful tissue engineering and implantation of functioning autologous heart valves based on vascular-derived cells. Human marrow stromal cells (MSC) exhibit the potential to differentiate into multiple cell-lineages and can be easily obtained clinically. The feasibility of creating tissue engineered heart valves (TEHV) from MSC as an alternative cell source, and the impact of a biomimetic in vitro environment on tissue differentiation was investigated. METHODS AND RESULTS: Human MSC were isolated, expanded in culture, and characterized by flow-cytometry and immunohistochemistry. Trileaflet heart valves fabricated from rapidly bioabsorbable polymers were seeded with MSC and grown in vitro in a pulsatile-flow-bioreactor. Morphological characterization included histology and electron microscopy (EM). Extracellular matrix (ECM)-formation was analyzed by immunohistochemistry, ECM protein content (collagen, glycosaminoglycan) and cell proliferation (DNA) were biochemically quantified. Biomechanical evaluation was performed using Instron(TM). In all valves synchronous opening and closing was observed in the bioreactor. Flow-cytometry of MSC pre-seeding was positive for ASMA, vimentin, negative for CD 31, LDL, CD 14. Histology of the TEHV-leaflets demonstrated viable tissue and ECM formation. EM demonstrated cell elements typical of viable, secretionally active myofibroblasts (actin/myosin filaments, collagen fibrils, elastin) and confluent, homogenous tissue surfaces. Collagen types I, III, ASMA, and vimentin were detected in the TEHV-leaflets. Mechanical properties of the TEHV-leaflets were comparable to native tissue. CONCLUSION: Generation of functional TEHV from human MSC was feasible utilizing a biomimetic in vitro environment. The neo-tissue showed morphological features and mechanical properties of human native-heart-valve tissue. The human MSC demonstrated characteristics of myofibroblast differentiation.

BACKGROUND: We previously demonstrated the successful tissue engineering and implantation of functioning autologous heart valves based on vascular-derived cells. Human marrow stromal cells (MSC) exhibit the potential to differentiate into multiple cell-lineages and can be easily obtained clinically. The feasibility of creating tissue engineered heart valves (TEHV) from MSC as an alternative cell source, and the impact of a biomimetic in vitro environment on tissue differentiation was investigated. METHODS AND RESULTS: Human MSC were isolated, expanded in culture, and characterized by flow-cytometry and immunohistochemistry. Trileaflet heart valves fabricated from rapidly bioabsorbable polymers were seeded with MSC and grown in vitro in a pulsatile-flow-bioreactor. Morphological characterization included histology and electron microscopy (EM). Extracellular matrix (ECM)-formation was analyzed by immunohistochemistry, ECM protein content (collagen, glycosaminoglycan) and cell proliferation (DNA) were biochemically quantified. Biomechanical evaluation was performed using Instron(TM). In all valves synchronous opening and closing was observed in the bioreactor. Flow-cytometry of MSC pre-seeding was positive for ASMA, vimentin, negative for CD 31, LDL, CD 14. Histology of the TEHV-leaflets demonstrated viable tissue and ECM formation. EM demonstrated cell elements typical of viable, secretionally active myofibroblasts (actin/myosin filaments, collagen fibrils, elastin) and confluent, homogenous tissue surfaces. Collagen types I, III, ASMA, and vimentin were detected in the TEHV-leaflets. Mechanical properties of the TEHV-leaflets were comparable to native tissue. CONCLUSION: Generation of functional TEHV from human MSC was feasible utilizing a biomimetic in vitro environment. The neo-tissue showed morphological features and mechanical properties of human native-heart-valve tissue. The human MSC demonstrated characteristics of myofibroblast differentiation.

Citations

32 citations in Web of Science®
180 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

105 downloads since deposited on 05 Jan 2010
29 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2002
Deposited On:05 Jan 2010 13:25
Last Modified:05 Apr 2016 13:39
Publisher:Lippincott Wiliams & Wilkins
ISSN:0009-7322
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1161/01.cir.0000032872.55215.05
PubMed ID:12354724
Permanent URL: http://doi.org/10.5167/uzh-25919

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations