Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and ArchiveĀ 

Ramdas, T; Egan, G K; Abramson, D; Baldridge, K K (2009). ERI sorting for emerging processor architectures. Computer Physics Communications, 180(8):1221-1229.

Full text not available from this repository.

Abstract

Electron Repulsion Integrals (ERIs) are a common bottleneck in ab initio computational chemistry. It is known that sorted/reordered execution of ERIs results in efficient SIMD/vector processing. This paper shows that reconfigurable computing and heterogeneous processor architectures can also benefit from a deliberate ordering of ERI tasks. However, realizing these benefits as net speedup requires a very rapid sorting mechanism. This paper presents two such mechanisms. Included in this study are analytical, simulation-based, and experimental benchmarking approaches to consider five use cases for ERI sorting, i.e. SIMD processing, reconfigurable computing, limited address spaces, instruction cache exploitation, and data cache exploitation. Specific consideration is given to existing cache-based processors, FPGAs, and the Cell Broadband Engine processor. It is proposed that the analyses conducted in this work should be built upon to aid the development of software autotuners which will produce efficient ab initio computational chemistry codes for a variety of computer architectures.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Organic Chemistry
DDC:540 Chemistry
Language:English
Date:January 2009
Deposited On:15 Jan 2010 12:01
Last Modified:23 Nov 2012 13:56
Publisher:Elsevier
ISSN:0010-4655
Publisher DOI:10.1016/j.cpc.2009.01.029
Citations:Google Scholarā„¢

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page