UZH-Logo

Maintenance Infos

A click approach to structurally diverse conjugates containing a central di-1,2,3-triazole metal chelate


Mindt, T L; Schweinsberg, C; Brans, L; Hagenbach, A; Abram, U; Tourwé, D; Garcia-Garayoa, E; Schibli, R (2009). A click approach to structurally diverse conjugates containing a central di-1,2,3-triazole metal chelate. ChemMedChem, 4(4):529-539.

Abstract

The selective and efficient synthesis of novel tridentate metal chelating systems containing two 1,4-disubstituted 1,2,3-triazole heterocycles obtained via the copper(I)-catalyzed cycloaddition of alkynes and azides (click reaction) is described. The constructs are shown to be efficient ligand systems for the chelation of fac-[M(CO)(3)(H(2)O)(3)](+) (M=(99m)Tc, Re) yielding well- defined and stable complexes. The organometallic (99m)Tc conjugates are suitable for application as diagnostic radiotracers for single photon emission computed tomography (SPECT) as demonstrated in vivo with a fragment of the tumor-targeting bombesin peptide functionalized with a di-1,2,3-triazole chelator and radiolabeled with [(99m)Tc(CO)(3)](+). Starting from readily available dialkyne precursors, the central chelating systems are formed as the conjugates are assembled by click reaction with azide-functionalized entities. Depending on the nature of the azide substrates employed (e.g. lipophilic or hydrophilic residues) pharmacologically relevant characteristics of the final metal conjugate such as hydrophilicity or overall charge can be readily modulated. The procedures described also enable the facile introduction of other probes into the metal conjugate, providing access to potential multimodal imaging agents.

The selective and efficient synthesis of novel tridentate metal chelating systems containing two 1,4-disubstituted 1,2,3-triazole heterocycles obtained via the copper(I)-catalyzed cycloaddition of alkynes and azides (click reaction) is described. The constructs are shown to be efficient ligand systems for the chelation of fac-[M(CO)(3)(H(2)O)(3)](+) (M=(99m)Tc, Re) yielding well- defined and stable complexes. The organometallic (99m)Tc conjugates are suitable for application as diagnostic radiotracers for single photon emission computed tomography (SPECT) as demonstrated in vivo with a fragment of the tumor-targeting bombesin peptide functionalized with a di-1,2,3-triazole chelator and radiolabeled with [(99m)Tc(CO)(3)](+). Starting from readily available dialkyne precursors, the central chelating systems are formed as the conjugates are assembled by click reaction with azide-functionalized entities. Depending on the nature of the azide substrates employed (e.g. lipophilic or hydrophilic residues) pharmacologically relevant characteristics of the final metal conjugate such as hydrophilicity or overall charge can be readily modulated. The procedures described also enable the facile introduction of other probes into the metal conjugate, providing access to potential multimodal imaging agents.

Citations

43 citations in Web of Science®
46 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:11 Jan 2010 11:58
Last Modified:16 Aug 2016 10:13
Publisher:Wiley-Blackwell
ISSN:1860-7179
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1002/cmdc.200800418
PubMed ID:19235821

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations