Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-26936

Nazabal, A; Hornemann, S; Aguzzi, A; Zenobi, R (2009). Hydrogen/deuterium exchange mass spectrometry identifies two highly protected regions in recombinant full-length prion protein amyloid fibrils. Journal of Mass Spectrometry, 44(6):965-977.

[img]PDF - Registered users only
1570Kb

Abstract

Understanding the structural basis that distinguishes the amyloid form of the prion protein from its monomeric homologue is of crucial importance to elucidate the mechanism of the lethal diseases related to this protein. Recently, an in vitro conversion system was established which reproduces the transition of recombinant prion protein PrP(23-230) from its native alpha-helical rich form into an aggregated amyloid beta-sheet rich form with physicochemical properties reminiscent to those of the disease-related isoform of the prion protein, PrPSc. To study the tertiary and quaternary structural organization within recombinant amyloid fibrils from mouse, mPrP(23-231)betaf; bovine, bPrP(23-230)betaf; and elk, ePrP(23-230)betaf; we utilized hydrogen/deuterium (H/D) exchange analyzed by matrix-assisted laser desorption/ionization (MALDI) and nano-electrospray (nano-ESI) mass spectrometry. No significant differences were found by measuring the deuterium exchange kinetics of the aggregated fibrillar forms for mPrP(23-231)betaf, bPrP(23-230)betaf and ePrP(23-230)betaf, indicating a similar overall structural organization of the fibrils from all three species. Next, we characterized the solvent accessibility for the soluble and fibrillar forms of the mouse prion protein by hydrogen exchange, pepsin proteolysis and nano-ESI ion trap mass spectrometry analysis. In its amyloid form, two highly protected regions of mPrP(23-231) comprising residues [24-98] and [182-212] were identified. The residues between the two highly protected stretches were found to be more solvent exposed, but less than in the soluble protein, and might therefore rather form part of a fibrillar interface.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
DDC:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2009
Deposited On:11 Jan 2010 15:20
Last Modified:27 Nov 2013 23:29
Publisher:Wiley-Blackwell
ISSN:1076-5174
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1002/jms.1572
PubMed ID:19283723
Citations:Web of Science®. Times Cited: 18
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page