UZH-Logo

Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants


Smith, S Y; Collinson, M E; Rudall, P J; Simpson, D A; Marone, F; Stampanoni, M (2009). Virtual taphonomy using synchrotron tomographic microscopy reveals cryptic features and internal structure of modern and fossil plants. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 106(29):12013-12018.

Abstract

While more commonly applied in zoology, synchrotron radiation X-ray tomographic microscopy (SRXTM) is well-suited to nondestructive study of the morphology and anatomy of both fossil and modern plants. SRXTM uses hard X-rays and a monochromatic light source to provide high-resolution data with little beam-hardening, resulting in slice data with clear boundaries between materials. Anatomy is readily visualized, including various planes of section from a single specimen, as clear as in traditional histological sectioning at low magnifications. Thus, digital sectioning of rare or difficult material is possible. Differential X-ray attenuation allows visualization of different layers or chemistries to enable virtual 3-dimensional (3D) dissections of material. Virtual potential fossils can be visualized and digital tissue removal reveals cryptic underlying morphology. This is essential for fossil identification and for comparisons between assemblages where fossils are preserved by different means. SRXTM is a powerful approach for botanical studies using morphology and anatomy. The ability to gain search images in both 2D and 3D for potential fossils gives paleobotanists a tool--virtual taphonomy--to improve our understanding of plant evolution and paleobiogeography.

While more commonly applied in zoology, synchrotron radiation X-ray tomographic microscopy (SRXTM) is well-suited to nondestructive study of the morphology and anatomy of both fossil and modern plants. SRXTM uses hard X-rays and a monochromatic light source to provide high-resolution data with little beam-hardening, resulting in slice data with clear boundaries between materials. Anatomy is readily visualized, including various planes of section from a single specimen, as clear as in traditional histological sectioning at low magnifications. Thus, digital sectioning of rare or difficult material is possible. Differential X-ray attenuation allows visualization of different layers or chemistries to enable virtual 3-dimensional (3D) dissections of material. Virtual potential fossils can be visualized and digital tissue removal reveals cryptic underlying morphology. This is essential for fossil identification and for comparisons between assemblages where fossils are preserved by different means. SRXTM is a powerful approach for botanical studies using morphology and anatomy. The ability to gain search images in both 2D and 3D for potential fossils gives paleobotanists a tool--virtual taphonomy--to improve our understanding of plant evolution and paleobiogeography.

Citations

25 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 05 Feb 2010
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:21 July 2009
Deposited On:05 Feb 2010 10:37
Last Modified:05 Apr 2016 13:43
Publisher:National Academy of Sciences
ISSN:0027-8424
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1073/pnas.0901468106
PubMed ID:19574457
Permanent URL: http://doi.org/10.5167/uzh-27014

Download

[img]Filetype: PDF - Registered users only
Size: 5MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations