Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-27032

Becker, Jürgen; Flückiger, R; Reum, M; Büchi, F N; Marone, F; Stampanoni, M (2009). Determination of Material Properties of Gas Diffusion Layers: Experiments and Simulations Using Phase Contrast Tomographic Microscopy. Journal of the Electrochemical Society, 156(10):B1175-B1181.

[img] PDF - Registered users only
View at publisher


Understanding the transport properties of porous materials plays an important role in the development and optimization of polymer electrolyte fuel cells (PEFCs). In this study numerical simulations of different transport properties are compared and validated with data obtained using recently developed experimental techniques. The study is based on a Toray TGP-H-060 carbon paper, a common gas diffusion layer (GDL) material in PEFC. Diffusivity, permeability, and electric conductivity of the anisotropic, porous material are measured experimentally under various levels of compression. A sample of the GDL is imaged with synchrotron-based X-ray tomography under three different compression levels. Based on these three-dimensional images, diffusivity, permeability, and conductivity are calculated numerically. Experimental and numerical results agree in general. Deviations are observed for the through-plane conductivity. An explanation for the discrepancy is presented and affirmed by numerical simulations on a virtually created structure model. This proves that numerical simulation based on tomography data is a versatile tool for the investigation and development of porous structures used in PEFCs.


81 citations in Web of Science®
87 citations in Scopus®
Google Scholar™



0 downloads since deposited on 08 Jan 2010
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Deposited On:08 Jan 2010 14:24
Last Modified:05 Apr 2016 13:43
Publisher:Electrochemical Society, Inc.
Publisher DOI:10.1149/1.3176876

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page