UZH-Logo

Maintenance Infos

Brachiopod punctae: A complexity in shell biomineralisation


Pérez-Huerta, A; Cusack, M; McDonald, S; Marone, F; Stampanoni, M; MacKay, S (2009). Brachiopod punctae: A complexity in shell biomineralisation. Journal of Structural Biology, 167(1):62-67.

Abstract

Perforations (“punctae”) are one of the most characteristic morphological shell features in calcite brachiopods. The significance of punctae is that they represent discontinuities in shell biomineralisation and thus add a level of complexity that must be accounted for in any model of brachiopod shell formation. A significant hindrance to understanding punctae growth and formation is the absence of sufficient information on volume, size and density. Here, we use synchrotron-radiation X-ray tomographic microscopy (SRXTM) to obtain three-dimensional information about punctae of five species of calcite brachiopods. X-ray tomography shows that punctae morphology is species-specific and reveals previously unknown levels of complexity for each species. This information is combined with previous data on morphology to discuss the function and growth of punctae. Overall the present study demonstrates the need to increase our understanding of discontinuities and the role of cell biology in the context of biomineralisation.

Perforations (“punctae”) are one of the most characteristic morphological shell features in calcite brachiopods. The significance of punctae is that they represent discontinuities in shell biomineralisation and thus add a level of complexity that must be accounted for in any model of brachiopod shell formation. A significant hindrance to understanding punctae growth and formation is the absence of sufficient information on volume, size and density. Here, we use synchrotron-radiation X-ray tomographic microscopy (SRXTM) to obtain three-dimensional information about punctae of five species of calcite brachiopods. X-ray tomography shows that punctae morphology is species-specific and reveals previously unknown levels of complexity for each species. This information is combined with previous data on morphology to discuss the function and growth of punctae. Overall the present study demonstrates the need to increase our understanding of discontinuities and the role of cell biology in the context of biomineralisation.

Citations

14 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 27 Jan 2010
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Date:1 July 2009
Deposited On:27 Jan 2010 12:14
Last Modified:05 Apr 2016 13:43
Publisher:Elsevier
ISSN:1047-8477
Publisher DOI:https://doi.org/10.1016/j.jsb.2009.03.013
Other Identification Number:10.1016/j.jsb.2009.03.013
Permanent URL: https://doi.org/10.5167/uzh-27033

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations