UZH-Logo

Effects of root canal preparation on apical geometry assessed by micro-computed tomography


Paqué, F; Ganahl, D; Peters, O A (2009). Effects of root canal preparation on apical geometry assessed by micro-computed tomography. Journal of Endodontics, 35(7):1056-1059.

Abstract

INTRODUCTION: Previous micro-computed tomography analyses of root canal preparation provided data that were usually averaged over canal length. The aim of this study was to compare preparation effects on apical root canal geometry. METHODS: Sixty extracted maxillary molars (180 canals) used in prior studies were reevaluated for analyses of the apical 4 mm. Teeth were scanned by using micro-computed tomography before and after canal shaping with FlexMaster, GT-Rotary, Lightspeed, ProFile, ProTaper, instruments or nickel-titanium K-files for hand instrumentation. Apical preparation was to a size #40 in mesiobuccal and distobuccal and #45 in palatal canals except for GT (#20) and ProTaper (#25 in mesiobuccal and distobuccal and #30 in palatal canals, respectively). Data for canal volume changes, the structure model index (quantifying canal cross sections), and untreated surface area were contrasted by using analysis of variance and Scheffé tests. RESULTS: Mean mesiobuccal, distobuccal, and palatal canal volumes increased after preparation (P < .05), but differences were noted for preparation techniques. GT rendered the smallest (0.20 +/- 0.14 mm(3)); K-files and ProFile showed the largest volume increases (0.51 +/- 0.20 mm(3) and 0.45 +/- 021 mm(3), P < .05). All canals were slightly rounder in the apical 4 mm after preparation indicated by nonsignificant increases in structure model index. Untreated areas ranged from 4%-100% and were larger in mesiobuccal and palatal canals than in distobuccal ones. Preparation with GT left significantly larger untreated areas in all canal types (P < .05); among root canal types, distobuccal canals had the least amounts of untreated surface areas. CONCLUSIONS: Apical canal geometry was affected differently by 6 preparation techniques; preparations with GT instruments to an apical size #20 left more canal surface untouched, which might affect the ability to disinfect root canals in maxillary molars.

INTRODUCTION: Previous micro-computed tomography analyses of root canal preparation provided data that were usually averaged over canal length. The aim of this study was to compare preparation effects on apical root canal geometry. METHODS: Sixty extracted maxillary molars (180 canals) used in prior studies were reevaluated for analyses of the apical 4 mm. Teeth were scanned by using micro-computed tomography before and after canal shaping with FlexMaster, GT-Rotary, Lightspeed, ProFile, ProTaper, instruments or nickel-titanium K-files for hand instrumentation. Apical preparation was to a size #40 in mesiobuccal and distobuccal and #45 in palatal canals except for GT (#20) and ProTaper (#25 in mesiobuccal and distobuccal and #30 in palatal canals, respectively). Data for canal volume changes, the structure model index (quantifying canal cross sections), and untreated surface area were contrasted by using analysis of variance and Scheffé tests. RESULTS: Mean mesiobuccal, distobuccal, and palatal canal volumes increased after preparation (P < .05), but differences were noted for preparation techniques. GT rendered the smallest (0.20 +/- 0.14 mm(3)); K-files and ProFile showed the largest volume increases (0.51 +/- 0.20 mm(3) and 0.45 +/- 021 mm(3), P < .05). All canals were slightly rounder in the apical 4 mm after preparation indicated by nonsignificant increases in structure model index. Untreated areas ranged from 4%-100% and were larger in mesiobuccal and palatal canals than in distobuccal ones. Preparation with GT left significantly larger untreated areas in all canal types (P < .05); among root canal types, distobuccal canals had the least amounts of untreated surface areas. CONCLUSIONS: Apical canal geometry was affected differently by 6 preparation techniques; preparations with GT instruments to an apical size #20 left more canal surface untouched, which might affect the ability to disinfect root canals in maxillary molars.

Citations

65 citations in Web of Science®
82 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

272 downloads since deposited on 01 Feb 2010
23 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Preventive Dentistry, Periodontology and Cariology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:July 2009
Deposited On:01 Feb 2010 15:32
Last Modified:05 Apr 2016 13:44
Publisher:Elsevier
ISSN:0099-2399
Publisher DOI:10.1016/j.joen.2009.04.020
PubMed ID:19567334
Permanent URL: http://doi.org/10.5167/uzh-27114

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations