UZH-Logo

Maintenance Infos

Bioengineered corporal tissue for structural and functional restoration of the penis


Chen, K L; Eberli, D; Yoo, J J; Atala, A (2010). Bioengineered corporal tissue for structural and functional restoration of the penis. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 107(8):3346-3350.

Abstract

Various reconstructive procedures have been attempted to restore a cosmetically acceptable phallus that would allow normal reproductive, sexual, and urinary function in patients requiring penile reconstruction. However, these procedures are limited by a shortage of native penile tissue. We previously demonstrated that a short segment of the penile corporal body can be replaced using naturally derived collagen matrices with autologous cells. In the current study, we examined the feasibility of engineering the entire pendular penile corporal bodies in a rabbit model. Neocorpora were engineered from cavernosal collagen matrices seeded with autologous cells using a multistep static/dynamic procedure, and these were implanted to replace the excised corpora. The bioengineered corpora demonstrated structural and functional parameters similar to native tissue and male rabbits receiving the bilateral implants were able to successfully impregnate females. This study demonstrates that neocorpora can be engineered for total pendular penile corporal body replacement. This technology has considerable potential for patients requiring penile reconstruction.

Abstract

Various reconstructive procedures have been attempted to restore a cosmetically acceptable phallus that would allow normal reproductive, sexual, and urinary function in patients requiring penile reconstruction. However, these procedures are limited by a shortage of native penile tissue. We previously demonstrated that a short segment of the penile corporal body can be replaced using naturally derived collagen matrices with autologous cells. In the current study, we examined the feasibility of engineering the entire pendular penile corporal bodies in a rabbit model. Neocorpora were engineered from cavernosal collagen matrices seeded with autologous cells using a multistep static/dynamic procedure, and these were implanted to replace the excised corpora. The bioengineered corpora demonstrated structural and functional parameters similar to native tissue and male rabbits receiving the bilateral implants were able to successfully impregnate females. This study demonstrates that neocorpora can be engineered for total pendular penile corporal body replacement. This technology has considerable potential for patients requiring penile reconstruction.

Citations

27 citations in Web of Science®
32 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 26 Mar 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
04 Faculty of Medicine > University Hospital Zurich > Urological Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:23 February 2010
Deposited On:26 Mar 2010 10:51
Last Modified:05 Apr 2016 13:44
Publisher:National Academy of Sciences
ISSN:0027-8424
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.0909367106
PubMed ID:19915140

Download

[img]
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations