UZH-Logo

Maintenance Infos

Construction and characterization of a kappa opioid receptor devoid of all free cysteines


Ott, D; Frischknecht, R; Plückthun, A (2004). Construction and characterization of a kappa opioid receptor devoid of all free cysteines. Protein Engineering Design and Selection : PEDS, 17(1):37-48.

Abstract

We have constructed an optimized mutant of the kappa opioid receptor (KOR), which is devoid of its 10 free cysteines. It was necessary to test different amino acid replacements at various positions and we used a structural model and homology with other receptor family members as a guide. This mutant binds ligands and couples to the cognate G-proteins in a very similar fashion to wild-type KOR. The addition of the antagonist naloxone during cell growth greatly enhances heterogeneous expression of the mutant in mammalian cells, such that amounts similar to wild-type could be produced. We showed by fluorescence microscopy that naloxone stabilizes the mutant in the plasma membrane. This mutant, which now permits the insertion of single cysteines, was designed for use in spectroscopic studies of ligand-induced receptor conformational changes as well as to simplify folding studies.

We have constructed an optimized mutant of the kappa opioid receptor (KOR), which is devoid of its 10 free cysteines. It was necessary to test different amino acid replacements at various positions and we used a structural model and homology with other receptor family members as a guide. This mutant binds ligands and couples to the cognate G-proteins in a very similar fashion to wild-type KOR. The addition of the antagonist naloxone during cell growth greatly enhances heterogeneous expression of the mutant in mammalian cells, such that amounts similar to wild-type could be produced. We showed by fluorescence microscopy that naloxone stabilizes the mutant in the plasma membrane. This mutant, which now permits the insertion of single cysteines, was designed for use in spectroscopic studies of ligand-induced receptor conformational changes as well as to simplify folding studies.

Citations

10 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 22 Aug 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2004
Deposited On:22 Aug 2008 10:00
Last Modified:05 Apr 2016 12:24
Publisher:Oxford University Press
ISSN:1741-0126
Publisher DOI:10.1093/protein/gzh004
PubMed ID:14985536
Permanent URL: http://doi.org/10.5167/uzh-2717

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations