UZH-Logo

Maintenance Infos

Fluxionality of gold nanoparticles investigated by Born-Oppenheimer molecular dynamics


Vargas, A; Santarossa, G; Iannuzzi, M; Baiker, A (2009). Fluxionality of gold nanoparticles investigated by Born-Oppenheimer molecular dynamics. Physical Review. B, Condensed Matter and Materials Physics, 80(19):195421.

Abstract

The structure and electronic properties of gold nanoparticles (Au 12, Au 13, Au 14, Au 15, Au 20, Au 34, and Au 55) have been investigated using Born-Oppenheimer ab initio molecular dynamic simulations of 50 to 80 ps in order to have an insight in the recently proposed fluxional character of nanosized gold. The dynamic changes in shape, symmetry, and atomic coordination of atoms within clusters, occurring in the time scale of picoseconds, which are characteristic of fluxionality, have been investigated for all the above systems at 300 K. Except for Au 20, all systems have been found to have fluxional properties. The extent and the type of fluxional behavior changed according to the number of atoms constituting the particle. At 300 K Au 12 and Au 13 rapidly generate several different topologies which cyclically interconvert. Au 14 shows a rotation of 8 external gold atoms around a core of six atoms. Au 15 is more rigid, but interestingly shows the interconversion between enantiomeric structures within the time scale of the simulation. Au 20 shows a high stability of the pyramidal topology and is the only one of the investigated systems not to show fluxionality within the assigned temperature and time scale. Au 34 and Au 55 show fluxionality of the outer shell and within the sampled time scale are able to change coordination of the outer shell atoms and thus open and close surface holes. For all the particles in study the structures forming the local minima were isolated and separately optimized, and the electronic properties of the thus obtained structures were analyzed.

The structure and electronic properties of gold nanoparticles (Au 12, Au 13, Au 14, Au 15, Au 20, Au 34, and Au 55) have been investigated using Born-Oppenheimer ab initio molecular dynamic simulations of 50 to 80 ps in order to have an insight in the recently proposed fluxional character of nanosized gold. The dynamic changes in shape, symmetry, and atomic coordination of atoms within clusters, occurring in the time scale of picoseconds, which are characteristic of fluxionality, have been investigated for all the above systems at 300 K. Except for Au 20, all systems have been found to have fluxional properties. The extent and the type of fluxional behavior changed according to the number of atoms constituting the particle. At 300 K Au 12 and Au 13 rapidly generate several different topologies which cyclically interconvert. Au 14 shows a rotation of 8 external gold atoms around a core of six atoms. Au 15 is more rigid, but interestingly shows the interconversion between enantiomeric structures within the time scale of the simulation. Au 20 shows a high stability of the pyramidal topology and is the only one of the investigated systems not to show fluxionality within the assigned temperature and time scale. Au 34 and Au 55 show fluxionality of the outer shell and within the sampled time scale are able to change coordination of the outer shell atoms and thus open and close surface holes. For all the particles in study the structures forming the local minima were isolated and separately optimized, and the electronic properties of the thus obtained structures were analyzed.

Citations

28 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

154 downloads since deposited on 14 Jan 2010
12 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:25 November 2009
Deposited On:14 Jan 2010 15:39
Last Modified:05 Apr 2016 13:44
Publisher:American Physical Society
ISSN:1098-0121
Publisher DOI:10.1103/PhysRevB.80.195421
Other Identification Number:ISI:000272311000107
Permanent URL: http://doi.org/10.5167/uzh-27260

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 6MB
View at publisher
[img]
Filetype: PDF - Registered users only
Size: 2MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations