UZH-Logo

Maintenance Infos

Seed dispersal and establishment of endangered plants on Oceanic Islands: the Janzen-Connell model, and the use of ecological analogues


Hansen, D M; Kaiser, C N; Müller, C B (2008). Seed dispersal and establishment of endangered plants on Oceanic Islands: the Janzen-Connell model, and the use of ecological analogues. PLoS ONE, 3(5):e2111.

Abstract

BACKGROUND: The Janzen-Connell model states that plant-specific natural enemies may have a disproportionately large negative effect on progeny close to maternal trees. The majority of experimental and theoretical studies addressing the Janzen-Connell model have explored how it can explain existing patterns of species diversity in tropical mainland areas. Very few studies have investigated how the model's predictions apply to isolated oceanic islands, or to the conservation management of endangered plants. Here, we provide the first experimental investigation of the predictions of the Janzen-Connell model on an oceanic island, in a conservation context. In addition, we experimentally evaluate the use of ecological analogue animals to resurrect the functional component of extinct frugivores that could have dispersed seeds away from maternal trees. METHODOLOGY/PRINCIPAL FINDINGS: In Mauritius, we investigated seed germination and seedling survival patterns of the critically endangered endemic plant Syzygium mamillatum (Myrtaceae) in relation to proximity to maternal trees. We found strong negative effects of proximity to maternal trees on growth and survival of seedlings. We successfully used giant Aldabran tortoises as ecological analogues for extinct Mauritian frugivores. Effects of gut-passage were negative at the seed germination stage, but seedlings from gut-passed seeds grew taller, had more leaves, and suffered less damage from natural enemies than any of the other seedlings. CONCLUSIONS/SIGNIFICANCE: We provide the first experimental evidence of a distance-dependent Janzen-Connell effect on an oceanic island. Our results potentially have serious implications for the conservation management of rare plant species on oceanic islands, which harbour a disproportionately large fraction of the world's endemic and endangered plants. Furthermore, in contrast to recent controversy about the use of non-indigenous extant megafauna for re-wilding projects in North America and elsewhere, we argue that Mauritius and other oceanic islands are ideal study systems in which to empirically explore the use of ecological analogue species in restoration ecology.

BACKGROUND: The Janzen-Connell model states that plant-specific natural enemies may have a disproportionately large negative effect on progeny close to maternal trees. The majority of experimental and theoretical studies addressing the Janzen-Connell model have explored how it can explain existing patterns of species diversity in tropical mainland areas. Very few studies have investigated how the model's predictions apply to isolated oceanic islands, or to the conservation management of endangered plants. Here, we provide the first experimental investigation of the predictions of the Janzen-Connell model on an oceanic island, in a conservation context. In addition, we experimentally evaluate the use of ecological analogue animals to resurrect the functional component of extinct frugivores that could have dispersed seeds away from maternal trees. METHODOLOGY/PRINCIPAL FINDINGS: In Mauritius, we investigated seed germination and seedling survival patterns of the critically endangered endemic plant Syzygium mamillatum (Myrtaceae) in relation to proximity to maternal trees. We found strong negative effects of proximity to maternal trees on growth and survival of seedlings. We successfully used giant Aldabran tortoises as ecological analogues for extinct Mauritian frugivores. Effects of gut-passage were negative at the seed germination stage, but seedlings from gut-passed seeds grew taller, had more leaves, and suffered less damage from natural enemies than any of the other seedlings. CONCLUSIONS/SIGNIFICANCE: We provide the first experimental evidence of a distance-dependent Janzen-Connell effect on an oceanic island. Our results potentially have serious implications for the conservation management of rare plant species on oceanic islands, which harbour a disproportionately large fraction of the world's endemic and endangered plants. Furthermore, in contrast to recent controversy about the use of non-indigenous extant megafauna for re-wilding projects in North America and elsewhere, we argue that Mauritius and other oceanic islands are ideal study systems in which to empirically explore the use of ecological analogue species in restoration ecology.

Citations

25 citations in Web of Science®
30 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

100 downloads since deposited on 22 Jul 2008
16 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:May 2008
Deposited On:22 Jul 2008 09:19
Last Modified:09 Aug 2016 09:02
Publisher:Public Library of Science (PLoS)
ISSN:1932-6203
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1371/journal.pone.0002111
PubMed ID:18461169
Permanent URL: http://doi.org/10.5167/uzh-2741

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations