UZH-Logo

Maintenance Infos

Transglutaminases, involucrin, and loricrin as markers of epidermal differentiation in skin substitutes derived from human sweat gland cells


Tharakan, S; Pontiggia, L; Biedermann, T; Böttcher-Haberzeth, S; Schiestl, C; Reichmann, E; Meuli, M (2010). Transglutaminases, involucrin, and loricrin as markers of epidermal differentiation in skin substitutes derived from human sweat gland cells. Pediatric Surgery International, 26(1):71-77.

Abstract

BACKGROUND/PURPOSE: In a multi-project research line, we are currently testing whether a morphologically and functionally near normal epidermis can be cultured from human sweat gland (SG) cells and be used as a skin substitute. The present study focuses on the stratum corneum of the epidermis that assumes a vital barrier function for the skin. The main process in the formation of the cornified cell envelope in human epidermis, i.e. crosslinking of proteins and lipids, is catalyzed by several transglutaminases (TG). Therefore, we compared the expression patterns of various TG and their substrates in SG-derived versus keratinocyte-derived epidermal substitutes. METHODS: Sweat gland cells, keratinocytes, and fibroblasts were isolated from human skin samples and cultivated separately to generate epidermal substitutes. These were transplanted onto the back of athymic rats. After 2 weeks, the transplants were excised and analyzed histologically as well as by indirect immunofluorescence. We looked at the expression of TG1, 3, 5, and their substrates involucrin and loricrin (=markers of epidermal differentiation) in SG-derived and keratinocyte-derived skin substitutes as well as in normal skin. RESULTS: The SG cell-derived epidermis was near normal anatomically, formed a cornified cell envelope and demonstrated TG1, 3, and 5 as well as involucrin and loricrin expression patterns similar to those found in keratinocyte-derived epidermis and normal control skin. CONCLUSION: These findings support the thesis that SG cells have the potential to form a near normal stratified epidermal analog that might be used as a skin substitute. The expression of TG1 and 3, not normally expressed in human SG, suggests the presence of re-programmed SG cells and/or stem cells capable of both de novo generating and maintaining an epidermis.

Abstract

BACKGROUND/PURPOSE: In a multi-project research line, we are currently testing whether a morphologically and functionally near normal epidermis can be cultured from human sweat gland (SG) cells and be used as a skin substitute. The present study focuses on the stratum corneum of the epidermis that assumes a vital barrier function for the skin. The main process in the formation of the cornified cell envelope in human epidermis, i.e. crosslinking of proteins and lipids, is catalyzed by several transglutaminases (TG). Therefore, we compared the expression patterns of various TG and their substrates in SG-derived versus keratinocyte-derived epidermal substitutes. METHODS: Sweat gland cells, keratinocytes, and fibroblasts were isolated from human skin samples and cultivated separately to generate epidermal substitutes. These were transplanted onto the back of athymic rats. After 2 weeks, the transplants were excised and analyzed histologically as well as by indirect immunofluorescence. We looked at the expression of TG1, 3, 5, and their substrates involucrin and loricrin (=markers of epidermal differentiation) in SG-derived and keratinocyte-derived skin substitutes as well as in normal skin. RESULTS: The SG cell-derived epidermis was near normal anatomically, formed a cornified cell envelope and demonstrated TG1, 3, and 5 as well as involucrin and loricrin expression patterns similar to those found in keratinocyte-derived epidermis and normal control skin. CONCLUSION: These findings support the thesis that SG cells have the potential to form a near normal stratified epidermal analog that might be used as a skin substitute. The expression of TG1 and 3, not normally expressed in human SG, suggests the presence of re-programmed SG cells and/or stem cells capable of both de novo generating and maintaining an epidermis.

Citations

10 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 01 Mar 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Clinic for Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:January 2010
Deposited On:01 Mar 2010 13:28
Last Modified:05 Apr 2016 13:45
Publisher:Springer
ISSN:0179-0358
Publisher DOI:https://doi.org/10.1007/s00383-009-2517-5
PubMed ID:19856181

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations